
  

 ΦAbstract – Breakthrough innovations in electrical machines 
may be limited by parametric overlays and templates provided 
in commercial electromagnetic simulation software. Disruptive 
design spaces must therefore be explored using more flexible 
open-source software solutions. However, a significant scripting 
effort is necessary to define some new parametric geometries 
suitable for design optimization based on open source 
multiphysics solvers. This article illustrates the use of Pyleecan 
open-source simulation software under Python to more 
efficiently model, evaluate and optimize disruptive topologies of 
2D or 3D electrical machines. The current status of Pyleecan 
initiative is first presented. Then, the principle and the 
advantages of the object-oriented approach of electrical 
machines are detailed. Some examples of complex innovative 
topologies that can be generated with Pyleecan are then 
introduced (e.g. complex winding, uneven slot types, multiple 
rotor and stators), as well as the optimization possibilities. 
Finally, the development roadmap of Pyleecan project is given. 
 

Index Terms-- Design optimization, Electrical machines, 
Multiphysics, Open source, Simulation software 

I.   INTRODUCTION 

yleecan stands for PYthon Library for Electrical 

Engineering Computational ANalysis. This open-source 

project under Python and Apache license was first 

presented at ICEM 2018 [1]. The initial purpose of the 

project is to boost applied research and development in 

electric mobility and sustainable energies by providing an 

object-oriented development framework of electrical 

machines and drives modeling. The project is in Python, one 

of the most widely used scientific software language, and it 

includes IDE and graphical post-processing features which 

are as easy to use.  

 
Fig. 1.  Pyleecan logo (www.pyleecan.org) 
 

One can indeed observe that very similar functionalities, 

such as coupling a Matlab / Scilab / Octave script to FEMM 

[2], Elmer [3] or GetDP [4] in order to draw a parametrized 

geometry of an electrical machine, are redundantly 

developed among electrical engineering laboratories and 

industrial R&D departments, without being shared to the 

whole scientific community. This is a major issue for 

reproducible science and research efficiency, and this 

observation has motivated the start of Pyleecan project. To 

efficiently share, version, correct, and drive the development 

of a complex scientific code, the use of an online platform 

with software development services is necessary. Today, 
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Pyleecan project is hosted on GitHub at 

https://github.com/Eomys/pyleecan.  

Currently, Pyleecan handles the geometrical modelling of 

main 2D radial flux machines such as: 

- surface or interior permanent magnet machines 

(SPMSM, IPMSM), 

- synchronous reluctance machines (SynRM), 

- squirrel-cage induction machines and doubly-fed 

induction machines (SCIM, DFIM), 

- would rotor synchronous machines and salient pole 

synchronous machines (WSRM), 

-  switched reluctance machines (SRM).  

 

All topologies can be drawn as inner or outer rotor, with 

any winding types, slot shapes, pocket shapes and ventilation 

duct shapes. Fig. 2 illustrates some electrical machines 

topologies that can be modeled in Pyleecan. 

 
Fig. 2.  Examples of topologies modelled with Pyleecan 

 

Pyleecan is also fully coupled to the open-source 
electromagnetic finite-element software FEMM, including 
sliding band solver and symmetries. This means that current-
driven non-linear magnetostatic simulations can be 
automatically carried out and post-processed to evaluate 
electromagnetic performances of these machines such as 
torque, torque ripple, inductances, flux linkages, back 
electromotive forces, and magnetic losses.  

In January 2020, a Graphical User Interface (GUI) 
developed under PyQt was added to the project to 
graphically design all the available machine types. The GUI 
code was structured to automatically include new slot 
shapes, and to ease the addition of new topologies (see Fig. 
3).  

Pyleecan also includes a multiphysic material library for 
magnetic materials (e.g. magnets, laminations), active 
materials (e.g. copper) and structural materials. Material 
properties can be added and edited through the GUI.  
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Fig. 3.  GUI of Pyleecan 
 

II.   GEOMETRIC MODELER OF PYLEECAN 

A.   Principle of OOP 

As explained in the publication that introduced Pyleecan 
[1], Object-Oriented Programming (OOP) is a programming 
paradigm based on the concept of “objects”. These objects, 
programmed as “classes”, represent an abstraction of real 
objects that are found in electrical machines such as 
laminations, magnets, winding, etc. These entities are 
defined by their attributes and their methods.  

Using object orientation is particularly useful during 
design exploration. As an example, once a lamination with a 
new AC winding type is defined, it can be easily applied to 
all AC machines (e.g. PMSM, SCIM, DFIM).  

B.   Pyleecan Classes Organization 

The geometric modeler of Pyleecan is organized around 
the Machine, Lamination and Slot classes (and their 
respective daughters). The Machine classes detail and gather 
all the parts of the machine (stator, rotor, shaft, frame…). 
Fig. 4 shows how the different machine types are organized. 

 
Fig. 4. Machine classes organization 
 

This graph shows the relation between classes. The arrow 
indicates that a class “inherits” from another. For instance, 
MachineIPMSM and MachineWRSM (respectively the 
classes for Interior Permanent Magnet Synchronous Machine 
and Wound Rotor Synchronous Machines) inherit from 
MachineSync (abstract class for Synchronous machine). In 
this case, MachineIPMSM is said to be a “daughter” of the 
MachineSync class, or that MachineIPMSM is a particular 
case of MachineSync.  

OOP enables to define “interfaces”, to define parts of the 
code as black boxes with predefined input and output 
formats. Thus, different objects can be used to model parts 
of the software provided that they follow the interface 
standards. In this case, MachineSync can be seen as an 
interface defining what can be done with a synchronous 
machine (e.g. calculating D-axis and Q-axis position). Then, 
each daughter provides its own way of implementing the 
interface. In particular, the MachineSync says that a 

synchronous machine has a rotor and a stator. Both 
MachineIPMSM and MachineWRSM have a stator with a 
winding but they have different rotors (with interior magnets 
or winding around poles). The code defines how to interact 
with a MachineSync rotor whatever its actual kind. This 
way, a simple command line can be used to draw any 
electrical machine, which naturally calls the respective 
drawing command lines of rotor and stator laminations, each 
drawing method being adapted to each lamination type. 

The Machine interface enables to define electrical 
machines with different types of laminations. Fig. 5 shows 
how Lamination classes are organized. 

 
Fig. 5. Lamination classes organization 
 

The Lamination class corresponds to a plain cylinder 
lamination, while LamHole and LamSlot correspond to 
Laminations with empty holes inside the lamination or 
empty slots along the lamination bore radius. Fig. 6 shows 
how Holes and Slots are defined. 

  
Fig. 6. LamHole on the left, LamSlot on the right 
 

Holes are by definition “carved” into the cylinder, while 
Slots are “grooved” along bore diameter. Then, 
LamSlotWind and LamHoleMag correspond respectively to 
laminations with slots containing windings and to 
laminations with holes containing magnets. Fig. 7 shows 
how the Slots and Holes interfaces are organized. 

As for the Lamination class, the Slot and Hole classes are 
organized depending on whether they are intended to contain 
a winding, a magnet or nothing. For instance, SlotW10 and 
HoleM10 represent a specific parameterized geometry of the 
Slot and Hole classes. All different Slot and Hole 
parameterized geometries are available in the GUI. 

 

 
Fig. 7. Slot classes organization 
 

 
Fig. 8. SlotW10 class schematics 



  

C.   Geometry Modeler 

This part details how Pyleecan takes advantage of the 

OOP to simplify the definition of complex topologies. The 

method used in Pyleecan to draw a Machine with two 

LamSlot objects for rotor and stator is hereafter described. 

Each daughter of Lamination has its own method to be 

drawn - some of them are presented in part IV - but they all 

follow the logic of LamSlot.  

The geometry modeler is organized around the 

build_geometry method that returns a “list of Surface objects 

needed to draw the object”. Surface objects are defined by a 

label, a reference point (in complex coordinates) inside the 

surface, and a list of Line objects corresponding to surface 

edges. The Line object defines several ways to go from one 

point to another (arc or segment). Each line can also have its 

own label. As a convention, the line list of a Surface object 

is defined in order to describe the edges of a closed surface.  

The build_geometry method is implemented in the 

Machine, Lamination and Slot objects. To gain in 

abstraction, the machine build_geometry method calls the 

lamination build_geometry method, which itself calls the slot 

one.  

The Slot build_geometry method returns a list of Lines 

defining the contour of a single slot centered along x- axis. 

Lines are ordered along trigonometric direction. Each slot 

type has its own build_geometry method returning a 

different set of lines according to its parametric geometry. 

The list of available slot types is available in Pyleecan GUI 

and on Github. 

Then, in the LamSlot build_geometry method, the Slot 

comp_angle_opening method is called to get the angular 

position of the starting and ending points of the Slot along 

the bore radius. LamSlot build_geometry method then copies 

/ rotates the first slot contour Line and connects it with bore 

radius lines (most of the time an arc, but it can be easily 

changed to alter the bore shape or include notches). As the 

slot is manipulated through its beginning and ending points’ 

angular positions, this method which generates the LamSlot 

bore contour works whatever the slot type used. Thanks to 

OOP, a new slot type can be easily introduced into Pyleecan 

by defining a new build_geometry method for this Slot. 

Moreover, the LamSlot build_geometry method includes a 

parameter for symmetry. To draw only half of the machine, 

Pyleecan copies/rotates only half the slot, and only half of 

the first and last bore radius lines are added. In the other 

Lamination objects, this behavior is adapted to also consider 

surface objects for winding, holes and magnets if needed. 

This means that any 2D geometry can be easily cut to 

include any type of symmetry depending on physics (e.g. 

magnetic, thermal, structural). 

Finally, the Machine build_geometry method is the 

simplest one. To get all the Surfaces needed to draw the 

machine, all the surfaces of each part are simply 

concatenated by calling the corresponding build_geometry 

local method. In our example, since both rotor and stator 

laminations are of type LamSlot, the same code is used for 

both.  

III.   2D/3D MODELING AND MESHING 

A.   Plot Machine 

As seen in part II.  , build_geometry method enables to get 
a “list of Surface objects needed to draw the object”. The 

first application of this method is to draw the machine (plot 
method of Machine). In this global method, the local plot 
method of each machine part (rotor, shaft, frame…) is 
called, using the corresponding build_geometry methods. 
Then, each surface is converted to a matplotlib “patch” by 
the Surface method get_patch, that mostly returns its 
Polygon equivalent. As each surface has its own label, it can 
be identified and set to the correct color for the rotor, the 
magnets, winding, etc. The legend is then adapted according 
to the surfaces that are currently plotted. 

B.   2D Mesh Generation - FEMM coupling example 

Pyleecan currently includes a coupling with FEMM [2] to 
automatically define a 2D geometry and mesh it, define a 
non-linear magnetostatic problem (e.g. physics of magnetic 
materials, current sources), solve it and post process it to 
obtain the magnetic flux density distribution inside the 
whole electrical machine. The coupling with FEMM is 
strongly built around the geometry modeler. The logic of the 
coupling with FEMM can be summarized with the following 
pseudo-code:  
for surface in machine.build_geometry() 

    for line in surface.get_lines(): 
        line.draw_FEMM() 
    assign_surface(surface.ref_point, surface.label) 

 
As the build_geometry method enables to get only a 

symmetric part of the lamination (half of the lamination for 
instance), Fig. 9 shows that symmetries are natively 
available in the FEMM coupling by calling build_geometry 
with the right input parameters. 

For the boundary conditions on the yoke edges,  the 
build_geometry method of the corresponding Lamination 
class sets the label of the corresponding lines and then, when 
drawing the lines in FEMM, Pyleecan checks if the line has 
a label that requires to set a boundary condition.  

 

 
Fig. 9. FEMM model with symmetry obtained with Pyleecan 
 

C.   3D Mesh Generation - Gmsh coupling example 

Pyleecan also currently includes a coupling with Gmsh 
[4], an open source mesher, to generate a 3D mesh of a 
lamination with empty slots. This coupling was developed to 
prepare open-source 3D Finite Elements Analysis (FEA) 
magnetic calculations with GetDP/OneLab, but also to ease 
calls to other free multiphysic FEA solvers such as Elmer [3] 
and Agros2D [5]. Gmsh coupling uses build_geometry to get 
a surface that defines a symmetric part of the Lamination 
(most of the time a single tooth). This surface is drawn in 
Gmsh, copied/rotated to get the complete 2D lamination, 
then extruded and meshed to get the 3D lamination stack. 

The geometry modeler creates each line of the surface 
with its own label. They can therefore be identified and 
selected to set particular properties (e.g. apply an equivalent 



  

mass or set the number of elements on the line). Fig. 10 
shows a LamSlot with a SlotW10 meshed using Pyleecan, 
where the number of elements is enforced for each tooth line 
to get smaller elements in the tooth compared to yoke ones.  

 

 
Fig. 10. Top view of a 3D mesh with enforced elements number obtained 
with Pyleecan 
 

In general, all features and complex topologies that are 
available through build_geometry methods can be reused 
directly in all coupling methods without further work 
(including notches, new slot or magnet shapes). Fig. 11 
shows the 3D mesh of a LamSlotMulti object that is 
introduced in part IV. In this case, the original surface is not 
a tooth but is generated with the build_geometry method 
using a user-defined order 4 symmetry. 

 

 
Fig. 11. 3D mesh of a Lamination with two slot kinds and notches obtained 
with Pyleecan 
 

D.   New Coupling Capabilities 

Both coupling with FEMM and Gmsh are centered around 
build_geometry method that encapsulates all the geometric 
complexity. These coupling workflows are generic enough 
to be adapted and reused for other 2D/3D software coupling 
or to import/export the resulting meshes. Some software now 
includes Python-friendly scripting capabilities that can also 
ease Pyleecan coupling (e.g. Altair Flux using pyflux library 
[6]).  

When developing a new coupling feature, all the electrical 
machine topologies available in Pyleecan will be 
automatically available, which is a significant gain in 
development time. Conversely, when developing new 
topologies in the geometric modeler of Pyleecan, it would 
also be directly available in all the software coupling 
features based on the geometry modeler.  

When benchmarking two different software (e.g. Gmsh 
[4] Vs Salome-Meca [7] meshing algorithm, Ansys Maxwell 
Vs Altair Flux magnetic solvers), Pyleecan geometry 
modeler is also interesting, because the geometry is defined 
according to exactly the same surface objects, lines, and 
point coordinates in both software, which is a gain in 
reproducibility. 

Finally, the geometry modeler benefits from the open 
source approach. Researchers working on different electrical 

machine types or even different scientific fields (heat 
transfer, structural mechanics, acoustics) can use the same 
objects and share their common work. If one contributor 
optimizes a topology or introduces a new feature in the 
build_geometry method, all Pyleecan community can 
directly use it without any extra work. 

IV.   EXAMPLES OF TOPOLOGY VARIATION 

This part introduces how to use Pyleecan to define some 
complex topologies. Most the figures from this publication 
are done with Pyleecan. Most of these cases are simple 
variations or a combination of standard objects. All the 
corresponding code is available on Pyleecan Github [8] for a 
better understanding on how these topologies are defined 
and to take inspiration to create new topologies. The code for 
each figure is gathered in 
pyleecan/Tests/Plot/test_ICEM_2020.py 

A.   Multiple Stators and Rotor 

The build_geometry method used for plots and coupling 
with third party software such as FEMM can be extended to 
several rotors and stators. This is done defining a list of 
laminations (instead of just one rotor and one stator) and 
calling the build_geometry of each lamination to get the 
complete description of the machine. Fig. 12 shows a double 
stator Flux Switching Permanent Magnet machine defined 
with two stators and two rotors [9]: 

  
Fig. 12. FSPM with two rotors and two stators obtained with Pyleecan 
 

B.   Uneven Slot / Tooth / Notches 

The build_geometry method of the LamSlot object can be 
easily adapted to a lamination with several kinds of Slots. 
The LamSlotMulti object contains a list of Slot objects and a 
list of the angular position of each slot center. The 
build_geometry method of this object is nearly the same as 
the one for LamSlot: instead of copying the contour lines of 
the slot, the build_geometry of each slot is called, the proper 
rotation is applied according to requested angular position, 
and the lamination bore lines are defined accordingly.  

In Fig. 13, two different types of slots are unevenly 
distributed and combined with evenly distributed rectangular 
notches. Two slots are also modified to highlight the 
possibility to change any slot. In Pyleecan, notches are 
modeled using the Slot object as well, so that every time a 
new slot is added to Pyleecan, it can automatically be used 
for notching as well.  



  

 
Fig. 13. Lamination with uneven slot and notches obtained with Pyleecan 
 

C.   User-defined slot shapes 

The Slot interface requires any slot class to have the 
following methods: build_geometry, comp_angle_opening, 
comp_height, comp_surface. The three last methods 
compute the opening angle, the height and the surface of the 
slot. All three of them can be computed numerically 
according to the result of build_geometry, which makes 
build_geometry the only method required to define a new 
slot (the others can be defined to provide an analytical way 
of computing the quantities). This means that the only piece 
of code needed to add a new slot in Pyleecan is a method to 
characterize its contour geometry.  

Starting from this observation, the user-defined slot class 
SlotUD is defined. This class has two properties: point_list, a 
list of complex coordinates, and is_sym to duplicate the 
coordinates by symmetry (and Zs inherited from the Slot 
class). This slot simply defines several points that are 
automatically connected with a Segment object in a generic 
build_geometry method. The only constraint is that the first 
(and last point if is_sym is False) must be on the bore radius. 
Fig. 14 shows an example of SlotUD (with Zs=6) 

  
Fig. 14. Lamination with user-defined slot obtained with Pyleecan 
 

D.   User-defined winding 

For the SlotWind interface (slot containing winding), three 
new methods are needed: build_geometry_wind, 
comp_height_wind and comp_surface_wind. The first one 
defines the Surface objects of winding active materials, the 
other two compute the winding “height” and surface. As for 
the Slot object, comp_height_wind and comp_surface_wind 
can be computed numerically by using the return of 
build_geometry_wind method.  

build_geometry_wind takes two parameters as argument: 
Nrad and Ntan (number of winding layers in radial or 
tangential direction). When Nrad>1 and/or Ntan >1, instead 
of returning a single surface, build_geometry_wind “cuts” 
the original active surface to define the correct number of 
winding layers as shown in Fig. 15. 

 

 
Fig. 15. Left: Nrad=1 and Ntan=1, right: Nrad=2 and Ntan=1 
 

The build_geometry method of LamSlotWind then 
copies/rotates all the surfaces to generate all the layers of all 
the slots. Each surface has a unique label to identify or select 
it. Pyleecan then defines several Winding classes that 
correspond to different winding patterns. Every winding 
class has a method comp_connection_mat that returns a 
winding connection matrix of size (Nrad, Ntan, Zs, qs), 
defining the number of turns in each layer of each slot for 
each phase. Fig. 16 shows a LamSlotWind wound rotor with 
a WindingUD user-defined winding. 

Fig. 17 shows that it is also possible to adapt the 
build_geometry_wind of any slot to define uneven winding 
surface for any layer. 

 Note that this feature is not available in Pyleecan at the 
moment of article writing. However, the corresponding code 
is commented in the SlotW11 build_geometry_wind code as 
a proof of concept. 

 
Fig. 16. Illustration of a user-defined winding obtained with Pyleecan 
 

 
Fig. 17. Uneven winding layers 
 

E.   Uneven bore radius 

When calling build_geometry, slot lines are duplicated 
and connected to lamination bore radius lines. By default, 
these “bore lines” are simply a single arc between two 
adjacent slots, but they can be changed to something else. 
For now, Pyleecan only enables to define an uneven bore 
radius for LamHole (Lamination for Hole, used for rotor of 
IPMSM machines). The build_geometry method of the 
LamHole defines the lamination surface with two circles, 
when a Bore object is set, the bore circle is replaced by the 
shape defined by the Bore object. Fig. 18 shows a LamHole 
with an uneven bore shape to model flux concentration 
machines: 



  

 
Fig. 18. LamHole with uneven bore obtained with Pyleecan 
 

On a side note, the HoleMag object contains a Magnet 
object for each magnet in the Hole. Which enables to define 
different material or magnetization type for each magnet and 
to completely remove one magnet as illustrated in Fig. 18. 
When removing a magnet, the corresponding surface is not 
returned by build_geometry. 

F.   Eccentricity and pole displacement 

Each surface is defined as a list of lines and a reference 
point, it includes rotate and translate methods. Therefore, the 
surfaces of the machine can be easily altered to simulate 
manufacturing tolerances or faults. For instance, in Pyleecan 
coupling with FEMM, a “transform_list” can be defined to 
apply rotation or translation on some surfaces selected 
according to their label. Fig. 19 shows the effect of the 
following “transform_list” on a FEMM model: 
transform_list = [ {"type": "rotate", "value": 0.08, "label": 
"MagnetRotorRadial_N_R0_T0_S3"},  
 {"type": "translate", "value": gap * 0.75, "label": 

"Rotor"})] 

 
Fig. 19. FEMM model with transformation obtained with Pyleecan 
 

As expected, the third magnet is rotated of 0.08 radians 
and the whole rotor is translated of 75% airgap wdith. For 
futur development, Pyleecan should include new 
objects/options to directly generate the modified surfaces 
with build_geometry. 

G.   Topology optimization 

To take full advantage of the geometric modeler, Pyleecan 
embeds a coupling with the Python optimization library 
DEAP [10]. This coupling enables to solve global 
optimization problem using the NSGA-II algorithm [11], 
which is often used in electrical machine design optimization 
for its robustness and possibility to handle mixed variables 
under constraints. This optimization module of Pyleecan also 

uses OOP to be flexible and to ease the addition of more 
optimization algorithms in the future. This organization 
enables to define every kind of design variables, constraints 
and objective functions based on Pyleecan objects such as:  
winding, material properties, slot, magnet, etc. 

In the following example, Pyleecan is used to maximize 
the fundamental torque while minimizing first torque 
harmonic of a machine. The machine is a 12-slot/8-pole 
three-phase PM motor with concentrated winding. Design 
variables are rotor magnet width between 0.3927 and 0.7775 
radians, and stator slot opening width between 0.0628 and 
0.3142 radians. No constraint is imposed for this example. 
For the time being, Pyleecan can only handle minimization 
problems, so that the maximization is treated as a 
minimization of the opposite of average torque. 
 The solver takes 20 hours to solve the optimization 
problem using NSGA-II with 100 generations of 20 
individuals on a single 2.5GHz core. Each simulation has 32 
timesteps and a mesh containing 5500 elements and 3000 
nodes and is computed with FEMM. The following graph 
shows the fitness values for each individual.  Fig. 20 shows 
that the algorithm converges to a Pareto front in the bottom 
left-hand corner. 

 
Fig. 20. Individuals in the fitness space 
 

Fig. 21 shows the original topology, the one that 
maximizes the average torque and the one that minimizes the 
first torque harmonic:  

 
Fig. 21. Initial machine (left), best topologies for first objective (middle) 
and for second objective (right) 
 

H.   New electrical machine topologies 

Pyleecan was initially created to focus on radial flux 
rotating machines, but OOP formalism can be used to extend 
it to axial flux machines, as well as linear machines.  

In terms of radial flux machines, other topologies that 
could be modelled with Pyleecan include line start 
permanent magnet synchronous machines, spoke-type 
PMSM, tooth winding induction machine, brushless doubly-
fed induction machines, as well as flux switching machines. 
Pyleecan could also be used for the design optimization of 
magnetic bearings and magnetically geared electrical 
machines. 

 



  

 
 
 

V.   PYLEECAN ROADMAP 

The development of Pyleecan new features are discussed 

on Github issue pages. Here are few interesting directions to 

investigate: 

- GUI extension to more complex machines, especially 

axial flux machines and linear machines 

- Loss calculation models of magnets and laminations, 

based on magnetic field obtained on FEMM mesh 

- Electrical Equivalent Circuit modeling for voltage 

driven simulation 

- Coupling to Elmer and GetDP to perform magneto-

harmonic analysis of induction machines, and 3D 

magnetostatic simulation of 3D machines (e.g. axial 

flux, claw pole alternators) 

- Import/Export with third party commercial software 

such as Ansys Maxwell, Altair Flux, Jsol Jmag 

- Electromagnetic design application modules (e.g. flux 

linkage maps, MTPA/MTPV, torque/slip curve) 

- Online documentation with Jupyter notebook tutorials 

and videos. 

VI.   CONCLUSION 

It has been shown that the geometry modeler of Pyleecan 

enables to create efficient coupling with 2D and 3D mesher 

software thanks to its OOP structure. The current state of 

Pyleecan already enables to simulate several complex 

topologies (e.g. complex winding, uneven slot types, 

multiple rotor and stators) and to solve global optimization 

problems using the NSGA-II algorithm. Moreover, the open 

source Apache license enables all PhD students and R&D 

engineers in electrical engineering to use it, even 

commercially, to investigate and optimize new topologies. 

Finally, the work on any new topology or coupling is 

automatically capitalized for all the community which is a 

significant gain in reproducible science and research 

efficiency. 
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