

 ΦAbstract – Breakthrough innovations in electrical machines
may be limited by parametric overlays and templates provided
in commercial electromagnetic simulation software. Disruptive
design spaces must therefore be explored using more flexible
open-source software solutions. However, a significant scripting
effort is necessary to define some new parametric geometries
suitable for design optimization based on open source
multiphysics solvers. This article illustrates the use of Pyleecan
open-source simulation software under Python to more
efficiently model, evaluate and optimize disruptive topologies of
2D or 3D electrical machines. The current status of Pyleecan
initiative is first presented. Then, the principle and the
advantages of the object-oriented approach of electrical
machines are detailed. Some examples of complex innovative
topologies that can be generated with Pyleecan are then
introduced (e.g. complex winding, uneven slot types, multiple
rotor and stators), as well as the optimization possibilities.
Finally, the development roadmap of Pyleecan project is given.

Index Terms-- Design optimization, Electrical machines,
Multiphysics, Open source, Simulation software

I. INTRODUCTION

yleecan stands for PYthon Library for Electrical

Engineering Computational ANalysis. This open-source

project under Python and Apache license was first

presented at ICEM 2018 [1]. The initial purpose of the

project is to boost applied research and development in

electric mobility and sustainable energies by providing an

object-oriented development framework of electrical

machines and drives modeling. The project is in Python, one

of the most widely used scientific software language, and it

includes IDE and graphical post-processing features which

are as easy to use.

Fig. 1. Pyleecan logo (www.pyleecan.org)

One can indeed observe that very similar functionalities,

such as coupling a Matlab / Scilab / Octave script to FEMM

[2], Elmer [3] or GetDP [4] in order to draw a parametrized

geometry of an electrical machine, are redundantly

developed among electrical engineering laboratories and

industrial R&D departments, without being shared to the

whole scientific community. This is a major issue for

reproducible science and research efficiency, and this

observation has motivated the start of Pyleecan project. To

efficiently share, version, correct, and drive the development

of a complex scientific code, the use of an online platform

with software development services is necessary. Today,

Φ P. Bonneel, J. Le Besnerais, E. Devillers, C. Marinel and R. Pile are

with the company EOMYS ENGINEERING, Lille-Hellemmes, France
(website: www.eomys.com, e-mail: contact@eomys.com).

Pyleecan project is hosted on GitHub at

https://github.com/Eomys/pyleecan.

Currently, Pyleecan handles the geometrical modelling of

main 2D radial flux machines such as:

- surface or interior permanent magnet machines

(SPMSM, IPMSM),

- synchronous reluctance machines (SynRM),

- squirrel-cage induction machines and doubly-fed

induction machines (SCIM, DFIM),

- would rotor synchronous machines and salient pole

synchronous machines (WSRM),

- switched reluctance machines (SRM).

All topologies can be drawn as inner or outer rotor, with

any winding types, slot shapes, pocket shapes and ventilation

duct shapes. Fig. 2 illustrates some electrical machines

topologies that can be modeled in Pyleecan.

Fig. 2. Examples of topologies modelled with Pyleecan

Pyleecan is also fully coupled to the open-source
electromagnetic finite-element software FEMM, including
sliding band solver and symmetries. This means that current-
driven non-linear magnetostatic simulations can be
automatically carried out and post-processed to evaluate
electromagnetic performances of these machines such as
torque, torque ripple, inductances, flux linkages, back
electromotive forces, and magnetic losses.

In January 2020, a Graphical User Interface (GUI)
developed under PyQt was added to the project to
graphically design all the available machine types. The GUI
code was structured to automatically include new slot
shapes, and to ease the addition of new topologies (see Fig.
3).

Pyleecan also includes a multiphysic material library for
magnetic materials (e.g. magnets, laminations), active
materials (e.g. copper) and structural materials. Material
properties can be added and edited through the GUI.

Design optimization of innovative electrical
machines topologies based on Pyleecan open-

source object-oriented software
P. Bonneel, J. Le Besnerais, E. Devillers, C. Marinel, R. Pile

P

Fig. 3. GUI of Pyleecan

II. GEOMETRIC MODELER OF PYLEECAN

A. Principle of OOP

As explained in the publication that introduced Pyleecan
[1], Object-Oriented Programming (OOP) is a programming
paradigm based on the concept of “objects”. These objects,
programmed as “classes”, represent an abstraction of real
objects that are found in electrical machines such as
laminations, magnets, winding, etc. These entities are
defined by their attributes and their methods.

Using object orientation is particularly useful during
design exploration. As an example, once a lamination with a
new AC winding type is defined, it can be easily applied to
all AC machines (e.g. PMSM, SCIM, DFIM).

B. Pyleecan Classes Organization

The geometric modeler of Pyleecan is organized around
the Machine, Lamination and Slot classes (and their
respective daughters). The Machine classes detail and gather
all the parts of the machine (stator, rotor, shaft, frame…).
Fig. 4 shows how the different machine types are organized.

Fig. 4. Machine classes organization

This graph shows the relation between classes. The arrow
indicates that a class “inherits” from another. For instance,
MachineIPMSM and MachineWRSM (respectively the
classes for Interior Permanent Magnet Synchronous Machine
and Wound Rotor Synchronous Machines) inherit from
MachineSync (abstract class for Synchronous machine). In
this case, MachineIPMSM is said to be a “daughter” of the
MachineSync class, or that MachineIPMSM is a particular
case of MachineSync.

OOP enables to define “interfaces”, to define parts of the
code as black boxes with predefined input and output
formats. Thus, different objects can be used to model parts
of the software provided that they follow the interface
standards. In this case, MachineSync can be seen as an
interface defining what can be done with a synchronous
machine (e.g. calculating D-axis and Q-axis position). Then,
each daughter provides its own way of implementing the
interface. In particular, the MachineSync says that a

synchronous machine has a rotor and a stator. Both
MachineIPMSM and MachineWRSM have a stator with a
winding but they have different rotors (with interior magnets
or winding around poles). The code defines how to interact
with a MachineSync rotor whatever its actual kind. This
way, a simple command line can be used to draw any
electrical machine, which naturally calls the respective
drawing command lines of rotor and stator laminations, each
drawing method being adapted to each lamination type.

The Machine interface enables to define electrical
machines with different types of laminations. Fig. 5 shows
how Lamination classes are organized.

Fig. 5. Lamination classes organization

The Lamination class corresponds to a plain cylinder
lamination, while LamHole and LamSlot correspond to
Laminations with empty holes inside the lamination or
empty slots along the lamination bore radius. Fig. 6 shows
how Holes and Slots are defined.

Fig. 6. LamHole on the left, LamSlot on the right

Holes are by definition “carved” into the cylinder, while
Slots are “grooved” along bore diameter. Then,
LamSlotWind and LamHoleMag correspond respectively to
laminations with slots containing windings and to
laminations with holes containing magnets. Fig. 7 shows
how the Slots and Holes interfaces are organized.

As for the Lamination class, the Slot and Hole classes are
organized depending on whether they are intended to contain
a winding, a magnet or nothing. For instance, SlotW10 and
HoleM10 represent a specific parameterized geometry of the
Slot and Hole classes. All different Slot and Hole
parameterized geometries are available in the GUI.

Fig. 7. Slot classes organization

Fig. 8. SlotW10 class schematics

C. Geometry Modeler

This part details how Pyleecan takes advantage of the

OOP to simplify the definition of complex topologies. The

method used in Pyleecan to draw a Machine with two

LamSlot objects for rotor and stator is hereafter described.

Each daughter of Lamination has its own method to be

drawn - some of them are presented in part IV - but they all

follow the logic of LamSlot.

The geometry modeler is organized around the

build_geometry method that returns a “list of Surface objects

needed to draw the object”. Surface objects are defined by a

label, a reference point (in complex coordinates) inside the

surface, and a list of Line objects corresponding to surface

edges. The Line object defines several ways to go from one

point to another (arc or segment). Each line can also have its

own label. As a convention, the line list of a Surface object

is defined in order to describe the edges of a closed surface.

The build_geometry method is implemented in the

Machine, Lamination and Slot objects. To gain in

abstraction, the machine build_geometry method calls the

lamination build_geometry method, which itself calls the slot

one.

The Slot build_geometry method returns a list of Lines

defining the contour of a single slot centered along x- axis.

Lines are ordered along trigonometric direction. Each slot

type has its own build_geometry method returning a

different set of lines according to its parametric geometry.

The list of available slot types is available in Pyleecan GUI

and on Github.

Then, in the LamSlot build_geometry method, the Slot

comp_angle_opening method is called to get the angular

position of the starting and ending points of the Slot along

the bore radius. LamSlot build_geometry method then copies

/ rotates the first slot contour Line and connects it with bore

radius lines (most of the time an arc, but it can be easily

changed to alter the bore shape or include notches). As the

slot is manipulated through its beginning and ending points’

angular positions, this method which generates the LamSlot

bore contour works whatever the slot type used. Thanks to

OOP, a new slot type can be easily introduced into Pyleecan

by defining a new build_geometry method for this Slot.

Moreover, the LamSlot build_geometry method includes a

parameter for symmetry. To draw only half of the machine,

Pyleecan copies/rotates only half the slot, and only half of

the first and last bore radius lines are added. In the other

Lamination objects, this behavior is adapted to also consider

surface objects for winding, holes and magnets if needed.

This means that any 2D geometry can be easily cut to

include any type of symmetry depending on physics (e.g.

magnetic, thermal, structural).

Finally, the Machine build_geometry method is the

simplest one. To get all the Surfaces needed to draw the

machine, all the surfaces of each part are simply

concatenated by calling the corresponding build_geometry

local method. In our example, since both rotor and stator

laminations are of type LamSlot, the same code is used for

both.

III. 2D/3D MODELING AND MESHING

A. Plot Machine

As seen in part II. , build_geometry method enables to get
a “list of Surface objects needed to draw the object”. The

first application of this method is to draw the machine (plot
method of Machine). In this global method, the local plot
method of each machine part (rotor, shaft, frame…) is
called, using the corresponding build_geometry methods.
Then, each surface is converted to a matplotlib “patch” by
the Surface method get_patch, that mostly returns its
Polygon equivalent. As each surface has its own label, it can
be identified and set to the correct color for the rotor, the
magnets, winding, etc. The legend is then adapted according
to the surfaces that are currently plotted.

B. 2D Mesh Generation - FEMM coupling example

Pyleecan currently includes a coupling with FEMM [2] to
automatically define a 2D geometry and mesh it, define a
non-linear magnetostatic problem (e.g. physics of magnetic
materials, current sources), solve it and post process it to
obtain the magnetic flux density distribution inside the
whole electrical machine. The coupling with FEMM is
strongly built around the geometry modeler. The logic of the
coupling with FEMM can be summarized with the following
pseudo-code:
for surface in machine.build_geometry()

 for line in surface.get_lines():
 line.draw_FEMM()
 assign_surface(surface.ref_point, surface.label)

As the build_geometry method enables to get only a

symmetric part of the lamination (half of the lamination for
instance), Fig. 9 shows that symmetries are natively
available in the FEMM coupling by calling build_geometry
with the right input parameters.

For the boundary conditions on the yoke edges, the
build_geometry method of the corresponding Lamination
class sets the label of the corresponding lines and then, when
drawing the lines in FEMM, Pyleecan checks if the line has
a label that requires to set a boundary condition.

Fig. 9. FEMM model with symmetry obtained with Pyleecan

C. 3D Mesh Generation - Gmsh coupling example

Pyleecan also currently includes a coupling with Gmsh
[4], an open source mesher, to generate a 3D mesh of a
lamination with empty slots. This coupling was developed to
prepare open-source 3D Finite Elements Analysis (FEA)
magnetic calculations with GetDP/OneLab, but also to ease
calls to other free multiphysic FEA solvers such as Elmer [3]
and Agros2D [5]. Gmsh coupling uses build_geometry to get
a surface that defines a symmetric part of the Lamination
(most of the time a single tooth). This surface is drawn in
Gmsh, copied/rotated to get the complete 2D lamination,
then extruded and meshed to get the 3D lamination stack.

The geometry modeler creates each line of the surface
with its own label. They can therefore be identified and
selected to set particular properties (e.g. apply an equivalent

mass or set the number of elements on the line). Fig. 10
shows a LamSlot with a SlotW10 meshed using Pyleecan,
where the number of elements is enforced for each tooth line
to get smaller elements in the tooth compared to yoke ones.

Fig. 10. Top view of a 3D mesh with enforced elements number obtained
with Pyleecan

In general, all features and complex topologies that are
available through build_geometry methods can be reused
directly in all coupling methods without further work
(including notches, new slot or magnet shapes). Fig. 11
shows the 3D mesh of a LamSlotMulti object that is
introduced in part IV. In this case, the original surface is not
a tooth but is generated with the build_geometry method
using a user-defined order 4 symmetry.

Fig. 11. 3D mesh of a Lamination with two slot kinds and notches obtained
with Pyleecan

D. New Coupling Capabilities

Both coupling with FEMM and Gmsh are centered around
build_geometry method that encapsulates all the geometric
complexity. These coupling workflows are generic enough
to be adapted and reused for other 2D/3D software coupling
or to import/export the resulting meshes. Some software now
includes Python-friendly scripting capabilities that can also
ease Pyleecan coupling (e.g. Altair Flux using pyflux library
[6]).

When developing a new coupling feature, all the electrical
machine topologies available in Pyleecan will be
automatically available, which is a significant gain in
development time. Conversely, when developing new
topologies in the geometric modeler of Pyleecan, it would
also be directly available in all the software coupling
features based on the geometry modeler.

When benchmarking two different software (e.g. Gmsh
[4] Vs Salome-Meca [7] meshing algorithm, Ansys Maxwell
Vs Altair Flux magnetic solvers), Pyleecan geometry
modeler is also interesting, because the geometry is defined
according to exactly the same surface objects, lines, and
point coordinates in both software, which is a gain in
reproducibility.

Finally, the geometry modeler benefits from the open
source approach. Researchers working on different electrical

machine types or even different scientific fields (heat
transfer, structural mechanics, acoustics) can use the same
objects and share their common work. If one contributor
optimizes a topology or introduces a new feature in the
build_geometry method, all Pyleecan community can
directly use it without any extra work.

IV. EXAMPLES OF TOPOLOGY VARIATION

This part introduces how to use Pyleecan to define some
complex topologies. Most the figures from this publication
are done with Pyleecan. Most of these cases are simple
variations or a combination of standard objects. All the
corresponding code is available on Pyleecan Github [8] for a
better understanding on how these topologies are defined
and to take inspiration to create new topologies. The code for
each figure is gathered in
pyleecan/Tests/Plot/test_ICEM_2020.py

A. Multiple Stators and Rotor

The build_geometry method used for plots and coupling
with third party software such as FEMM can be extended to
several rotors and stators. This is done defining a list of
laminations (instead of just one rotor and one stator) and
calling the build_geometry of each lamination to get the
complete description of the machine. Fig. 12 shows a double
stator Flux Switching Permanent Magnet machine defined
with two stators and two rotors [9]:

Fig. 12. FSPM with two rotors and two stators obtained with Pyleecan

B. Uneven Slot / Tooth / Notches

The build_geometry method of the LamSlot object can be
easily adapted to a lamination with several kinds of Slots.
The LamSlotMulti object contains a list of Slot objects and a
list of the angular position of each slot center. The
build_geometry method of this object is nearly the same as
the one for LamSlot: instead of copying the contour lines of
the slot, the build_geometry of each slot is called, the proper
rotation is applied according to requested angular position,
and the lamination bore lines are defined accordingly.

In Fig. 13, two different types of slots are unevenly
distributed and combined with evenly distributed rectangular
notches. Two slots are also modified to highlight the
possibility to change any slot. In Pyleecan, notches are
modeled using the Slot object as well, so that every time a
new slot is added to Pyleecan, it can automatically be used
for notching as well.

Fig. 13. Lamination with uneven slot and notches obtained with Pyleecan

C. User-defined slot shapes

The Slot interface requires any slot class to have the
following methods: build_geometry, comp_angle_opening,
comp_height, comp_surface. The three last methods
compute the opening angle, the height and the surface of the
slot. All three of them can be computed numerically
according to the result of build_geometry, which makes
build_geometry the only method required to define a new
slot (the others can be defined to provide an analytical way
of computing the quantities). This means that the only piece
of code needed to add a new slot in Pyleecan is a method to
characterize its contour geometry.

Starting from this observation, the user-defined slot class
SlotUD is defined. This class has two properties: point_list, a
list of complex coordinates, and is_sym to duplicate the
coordinates by symmetry (and Zs inherited from the Slot
class). This slot simply defines several points that are
automatically connected with a Segment object in a generic
build_geometry method. The only constraint is that the first
(and last point if is_sym is False) must be on the bore radius.
Fig. 14 shows an example of SlotUD (with Zs=6)

Fig. 14. Lamination with user-defined slot obtained with Pyleecan

D. User-defined winding

For the SlotWind interface (slot containing winding), three
new methods are needed: build_geometry_wind,
comp_height_wind and comp_surface_wind. The first one
defines the Surface objects of winding active materials, the
other two compute the winding “height” and surface. As for
the Slot object, comp_height_wind and comp_surface_wind
can be computed numerically by using the return of
build_geometry_wind method.

build_geometry_wind takes two parameters as argument:
Nrad and Ntan (number of winding layers in radial or
tangential direction). When Nrad>1 and/or Ntan >1, instead
of returning a single surface, build_geometry_wind “cuts”
the original active surface to define the correct number of
winding layers as shown in Fig. 15.

Fig. 15. Left: Nrad=1 and Ntan=1, right: Nrad=2 and Ntan=1

The build_geometry method of LamSlotWind then
copies/rotates all the surfaces to generate all the layers of all
the slots. Each surface has a unique label to identify or select
it. Pyleecan then defines several Winding classes that
correspond to different winding patterns. Every winding
class has a method comp_connection_mat that returns a
winding connection matrix of size (Nrad, Ntan, Zs, qs),
defining the number of turns in each layer of each slot for
each phase. Fig. 16 shows a LamSlotWind wound rotor with
a WindingUD user-defined winding.

Fig. 17 shows that it is also possible to adapt the
build_geometry_wind of any slot to define uneven winding
surface for any layer.

 Note that this feature is not available in Pyleecan at the
moment of article writing. However, the corresponding code
is commented in the SlotW11 build_geometry_wind code as
a proof of concept.

Fig. 16. Illustration of a user-defined winding obtained with Pyleecan

Fig. 17. Uneven winding layers

E. Uneven bore radius

When calling build_geometry, slot lines are duplicated
and connected to lamination bore radius lines. By default,
these “bore lines” are simply a single arc between two
adjacent slots, but they can be changed to something else.
For now, Pyleecan only enables to define an uneven bore
radius for LamHole (Lamination for Hole, used for rotor of
IPMSM machines). The build_geometry method of the
LamHole defines the lamination surface with two circles,
when a Bore object is set, the bore circle is replaced by the
shape defined by the Bore object. Fig. 18 shows a LamHole
with an uneven bore shape to model flux concentration
machines:

Fig. 18. LamHole with uneven bore obtained with Pyleecan

On a side note, the HoleMag object contains a Magnet
object for each magnet in the Hole. Which enables to define
different material or magnetization type for each magnet and
to completely remove one magnet as illustrated in Fig. 18.
When removing a magnet, the corresponding surface is not
returned by build_geometry.

F. Eccentricity and pole displacement

Each surface is defined as a list of lines and a reference
point, it includes rotate and translate methods. Therefore, the
surfaces of the machine can be easily altered to simulate
manufacturing tolerances or faults. For instance, in Pyleecan
coupling with FEMM, a “transform_list” can be defined to
apply rotation or translation on some surfaces selected
according to their label. Fig. 19 shows the effect of the
following “transform_list” on a FEMM model:
transform_list = [{"type": "rotate", "value": 0.08, "label":
"MagnetRotorRadial_N_R0_T0_S3"},
 {"type": "translate", "value": gap * 0.75, "label":

"Rotor"})]

Fig. 19. FEMM model with transformation obtained with Pyleecan

As expected, the third magnet is rotated of 0.08 radians
and the whole rotor is translated of 75% airgap wdith. For
futur development, Pyleecan should include new
objects/options to directly generate the modified surfaces
with build_geometry.

G. Topology optimization

To take full advantage of the geometric modeler, Pyleecan
embeds a coupling with the Python optimization library
DEAP [10]. This coupling enables to solve global
optimization problem using the NSGA-II algorithm [11],
which is often used in electrical machine design optimization
for its robustness and possibility to handle mixed variables
under constraints. This optimization module of Pyleecan also

uses OOP to be flexible and to ease the addition of more
optimization algorithms in the future. This organization
enables to define every kind of design variables, constraints
and objective functions based on Pyleecan objects such as:
winding, material properties, slot, magnet, etc.

In the following example, Pyleecan is used to maximize
the fundamental torque while minimizing first torque
harmonic of a machine. The machine is a 12-slot/8-pole
three-phase PM motor with concentrated winding. Design
variables are rotor magnet width between 0.3927 and 0.7775
radians, and stator slot opening width between 0.0628 and
0.3142 radians. No constraint is imposed for this example.
For the time being, Pyleecan can only handle minimization
problems, so that the maximization is treated as a
minimization of the opposite of average torque.
 The solver takes 20 hours to solve the optimization
problem using NSGA-II with 100 generations of 20
individuals on a single 2.5GHz core. Each simulation has 32
timesteps and a mesh containing 5500 elements and 3000
nodes and is computed with FEMM. The following graph
shows the fitness values for each individual. Fig. 20 shows
that the algorithm converges to a Pareto front in the bottom
left-hand corner.

Fig. 20. Individuals in the fitness space

Fig. 21 shows the original topology, the one that
maximizes the average torque and the one that minimizes the
first torque harmonic:

Fig. 21. Initial machine (left), best topologies for first objective (middle)
and for second objective (right)

H. New electrical machine topologies

Pyleecan was initially created to focus on radial flux
rotating machines, but OOP formalism can be used to extend
it to axial flux machines, as well as linear machines.

In terms of radial flux machines, other topologies that
could be modelled with Pyleecan include line start
permanent magnet synchronous machines, spoke-type
PMSM, tooth winding induction machine, brushless doubly-
fed induction machines, as well as flux switching machines.
Pyleecan could also be used for the design optimization of
magnetic bearings and magnetically geared electrical
machines.

V. PYLEECAN ROADMAP

The development of Pyleecan new features are discussed

on Github issue pages. Here are few interesting directions to

investigate:

- GUI extension to more complex machines, especially

axial flux machines and linear machines

- Loss calculation models of magnets and laminations,

based on magnetic field obtained on FEMM mesh

- Electrical Equivalent Circuit modeling for voltage

driven simulation

- Coupling to Elmer and GetDP to perform magneto-

harmonic analysis of induction machines, and 3D

magnetostatic simulation of 3D machines (e.g. axial

flux, claw pole alternators)

- Import/Export with third party commercial software

such as Ansys Maxwell, Altair Flux, Jsol Jmag

- Electromagnetic design application modules (e.g. flux

linkage maps, MTPA/MTPV, torque/slip curve)

- Online documentation with Jupyter notebook tutorials

and videos.

VI. CONCLUSION

It has been shown that the geometry modeler of Pyleecan

enables to create efficient coupling with 2D and 3D mesher

software thanks to its OOP structure. The current state of

Pyleecan already enables to simulate several complex

topologies (e.g. complex winding, uneven slot types,

multiple rotor and stators) and to solve global optimization

problems using the NSGA-II algorithm. Moreover, the open

source Apache license enables all PhD students and R&D

engineers in electrical engineering to use it, even

commercially, to investigate and optimize new topologies.

Finally, the work on any new topology or coupling is

automatically capitalized for all the community which is a

significant gain in reproducible science and research

efficiency.

VII. REFERENCES

[1] P. Bonneel, J. Le Besnerais, R. Pile and E. Devillers, "Pyleecan: An
Open-Source Python Object-Oriented Software for the Multiphysic
Design Optimization of Electrical Machines," 2018 XIII International
Conference on Electrical Machines (ICEM), Alexandroupoli, 2018,
pp. 948-954.

[2] FEMM (Finite Element Method Magnetics) by D. Meeker. [Online].
Available: http://www.femm.info

[3] J. Keränen et al., "Efficient Parallel 3-D Computation of Electrical
Machines With Elmer," in IEEE Trans. Magn., vol. 51, no. 3, pp. 1-4,
2015.

[4] OneLab, Open Numerical Engineering LABoratory [Online].
Available: http://onelab.info/

[5] KARBAN, Pavel, MACH, František, KŮS, Pavel, et al. Numerical

solution of coupled problems using code Agros2D. Computing, 2013,
vol. 95, no 1, p. 381-408.

[6] TAYLOR, Ross. Pyflux: An open source time series library for
Python. 2016. https://pyflux.readthedocs.io/en/latest/

[7] SALOME,” The open source integration platform for numerical
simulation”. https://www.salome-platform.org/

[8] P. Bonneel, et al. (2020, February 28). Eomys/pyleecan: ICEM2020
(Version v0.1-ICEM20). Zenodo.
http://doi.org/10.5281/zenodo.3691866

[9] MO, Lihong, QUAN, Li, ZHU, Xiaoyong, et al. Comparison and
analysis of flux-switching permanent-magnet double-rotor machine
with 4QT used for HEV. IEEE Transactions on Magnetics, 2014, vol.
50, no 11, p. 1-4.

[10] F.-M. De Rainville et al., "DEAP: A Python Framework for
Evolutionary Algorithms" in Companion Proceedings of the Genetic
and Evolutionary Computation Conference, 2012.

[11] K. Deb, et al., "A fast and elitist multiobjective genetic algorithm:
NSGA-II," in IEEE Transactions on Evolutionary Computation, vol.
6, no. 2, pp. 182-197, April 2002.

VIII. BIOGRAPHIES

P. Bonneel graduated in 2014 from the “Ecole Nationale Supérieure des
Sciences Appliquées et de Technologie” of Lannion (ENSSAT) in signal
analysis, computing science and electronics. After a first experience in
software development in speech synthesis at Voxygen, he currently works
in EOMYS ENGINEERING as a software development engineer.

J. Le Besnerais, following a M.Sc. specialized in Applied Mathematics
(Ecole Centrale Paris, France) in 2005, made an industrial PhD thesis in
Electrical Engineering at the L2EP laboratory of the Ecole Centrale de Lille,
North of France, on the reduction of electromagnetic noise and vibrations in
traction induction machines with ALSTOM Transport. In 2013, he founded
EOMYS ENGINEERING, where he currently works as an R&D engineer
on eNVH analysis and reduction.

Emile Devillers has done an industrial PhD thesis at EOMYS
ENGINEERING (Lille, France) and L2EP laboratory of the Ecole Centrale
de Lille, North of France and graduated in 2018. He is now researcher and
software developer at EOMYS, working on eNVH reduction.

C. Marinel has finished a M.Sc. degree in High Performance Computing
and Simulation (University of Lille, France) in 2019. He is now software
developer for MANATEE and Pyleecan at EOMYS ENGINEERING.

Raphaël Pile received a M.Sc. degree in Aerospace Engineering from
ISAE-Supaéro, Toulouse, France and a M.Sc. degree in Fundamental and
Applied Mathematics from Université Paul Sabatier, Toulouse, France, both
in 2017. He is now working on an industrial PhD thesis at the L2EP
laboratory (Univ. Lille, France) and LSEE laboratory (Univ. Artois, France)
with the company EOMYS ENGINEERING. His PhD thesis focuses on the
numerical methods to perform magneto-mechanical coupling for noise and
vibration study of electrical machines.

