Source code for Tests.Methods.Slot.test_SlotW29_meth

# -*- coding: utf-8 -*-

import pytest

from pyleecan.Classes.Segment import Segment

from pyleecan.Classes.SlotW29 import SlotW29
from numpy import ndarray, arcsin, exp
from pyleecan.Classes.LamSlot import LamSlot
from pyleecan.Classes.Slot import Slot

# For AlmostEqual
DELTA = 1e-4

slotW29_test = list()

# Internal Slot
lam = LamSlot(is_internal=True, Rext=0.1325)
lam.slot = SlotW29(H0=1e-3, H1=1.5e-3, H2=30e-3, W0=12e-3, W1=14e-3, W2=20e-3)
slotW29_test.append(
    {
        "test_obj": lam,
        "S_exp": 6.340874e-4,
        "Ao": 0.10004,
        "Aw": 0.174118,
        "SW_exp": 6e-4,
        "H_exp": 3.26359e-2,
    }
)

# External Slot
lam = LamSlot(is_internal=False, Rint=0.1325)
lam.slot = SlotW29(H0=1e-3, H1=1.5e-3, H2=30e-3, W0=12e-3, W1=14e-3, W2=20e-3)
slotW29_test.append(
    {
        "test_obj": lam,
        "S_exp": 6.31912e-4,
        "Ao": 0.10004,
        "Aw": 0.133185,
        "SW_exp": 6e-4,
        "H_exp": 3.2667e-2,
    }
)


[docs]class Test_SlotW29_meth(object): """pytest for SlotW29 methods"""
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_schematics(self, test_dict): """Check that the schematics is correct""" test_obj = test_dict["test_obj"] point_dict = test_obj.slot._comp_point_coordinate() # Check width assert abs(point_dict["Z1"] - point_dict["Z12"]) == pytest.approx( test_obj.slot.W0 ) assert abs(point_dict["Z2"] - point_dict["Z11"]) == pytest.approx( test_obj.slot.W0 ) assert abs(point_dict["Z3"] - point_dict["Z10"]) == pytest.approx( test_obj.slot.W1 ) assert abs(point_dict["Z4"] - point_dict["Z9"]) == pytest.approx( test_obj.slot.W1 ) assert abs(point_dict["Z5"] - point_dict["Z8"]) == pytest.approx( test_obj.slot.W2 ) assert abs(point_dict["Z6"] - point_dict["Z7"]) == pytest.approx( test_obj.slot.W2 ) # Check height assert abs(point_dict["Z1"] - point_dict["Z2"]) == pytest.approx( test_obj.slot.H0 ) assert abs(point_dict["Z3"] - point_dict["Z4"]) == pytest.approx( test_obj.slot.H1 ) assert abs(point_dict["Z5"] - point_dict["Z6"]) == pytest.approx( test_obj.slot.H2 ) assert abs(point_dict["Z12"] - point_dict["Z11"]) == pytest.approx( test_obj.slot.H0 ) assert abs(point_dict["Z10"] - point_dict["Z9"]) == pytest.approx( test_obj.slot.H1 ) assert abs(point_dict["Z7"] - point_dict["Z8"]) == pytest.approx( test_obj.slot.H2 )
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_build_geometry_active(self, test_dict): """Check that the computation of the average angle is correct""" test_obj = test_dict["test_obj"] surf_list = test_obj.slot.build_geometry_active(Nrad=3, Ntan=2) # Check label assert surf_list[0].label == "Wind_Stator_R0_T0_S0" assert surf_list[1].label == "Wind_Stator_R1_T0_S0" assert surf_list[2].label == "Wind_Stator_R2_T0_S0" assert surf_list[3].label == "Wind_Stator_R0_T1_S0" assert surf_list[4].label == "Wind_Stator_R1_T1_S0" assert surf_list[5].label == "Wind_Stator_R2_T1_S0" # Check tangential position assert surf_list[0].point_ref.imag < 0 assert surf_list[1].point_ref.imag < 0 assert surf_list[2].point_ref.imag < 0 assert surf_list[3].point_ref.imag > 0 assert surf_list[4].point_ref.imag > 0 assert surf_list[5].point_ref.imag > 0 # Check radial position if test_obj.is_internal: # Tan=0 assert surf_list[0].point_ref.real > surf_list[1].point_ref.real assert surf_list[1].point_ref.real > surf_list[2].point_ref.real # Tan=1 assert surf_list[3].point_ref.real > surf_list[4].point_ref.real assert surf_list[4].point_ref.real > surf_list[5].point_ref.real else: # Tan=0 assert surf_list[0].point_ref.real < surf_list[1].point_ref.real assert surf_list[1].point_ref.real < surf_list[2].point_ref.real # Tan=1 assert surf_list[3].point_ref.real < surf_list[4].point_ref.real assert surf_list[4].point_ref.real < surf_list[5].point_ref.real
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_comp_surface(self, test_dict): """Check that the computation of the surface is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_surface() a = result b = test_dict["S_exp"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg # Check that the analytical method returns the same result as the numerical one b = Slot.comp_surface(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_comp_surface_active(self, test_dict): """Check that the computation of the winding surface is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_surface_active() a = result b = test_dict["SW_exp"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg # Check that the analytical method returns the same result as the numerical one b = Slot.comp_surface_active(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_comp_height(self, test_dict): """Check that the computation of the height is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_height() a = result b = test_dict["H_exp"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg # Check that the analytical method returns the same result as the numerical one b = Slot.comp_height(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_comp_angle_opening(self, test_dict): """Check that the computation of the average opening angle iscorrect""" test_obj = test_dict["test_obj"] a = test_obj.slot.comp_angle_opening() assert a == 2 * arcsin(test_obj.slot.W0 / (2 * 0.1325)) # Check that the analytical method returns the same result as the numerical one b = Slot.comp_angle_opening(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg
[docs] @pytest.mark.parametrize("test_dict", slotW29_test) def test_comp_angle_active_eq(self, test_dict): """Check that the computation of the average angle is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_angle_active_eq() a = result b = test_dict["Aw"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg
[docs] def test_build_geometry(self): """check that curve_list is correct""" test_obj = LamSlot(is_internal=False, Rint=1) test_obj.slot = SlotW29(W0=0.2, H0=0.1, W1=0.4, H1=0.1, H2=0.6, W2=0.6) # Rbo=1 Z1 = exp(1j * float(arcsin(0.1))) Z2 = Z1 + 0.1 Z3 = Z1 + 0.1 + 0.1j Z4 = Z1 + 0.2 + 0.1j Z5 = Z1 + 0.2 + 0.2j Z6 = Z1 + 0.8 + 0.2j Z7 = Z1 + 0.8 - 0.4j Z8 = Z1 + 0.2 - 0.4j Z9 = Z1 + 0.2 - 0.3j Z10 = Z1 + 0.1 - 0.3j Z11 = Z1 + 0.1 - 0.2j Z12 = Z1 - 0.2j [Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12] = [ Z12, Z11, Z10, Z9, Z8, Z7, Z6, Z5, Z4, Z3, Z2, Z1, ] curve_list = list() curve_list.append(Segment(Z1, Z2)) curve_list.append(Segment(Z2, Z3)) curve_list.append(Segment(Z3, Z4)) curve_list.append(Segment(Z4, Z5)) curve_list.append(Segment(Z5, Z6)) curve_list.append(Segment(Z6, Z7)) curve_list.append(Segment(Z7, Z8)) curve_list.append(Segment(Z8, Z9)) curve_list.append(Segment(Z9, Z10)) curve_list.append(Segment(Z10, Z11)) curve_list.append(Segment(Z11, Z12)) result = test_obj.slot.build_geometry() assert len(result) == len(curve_list) for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin assert abs((a - b) / a - 0) < DELTA, ( "Wrong build_geo (for begin point " + str(i) + " returned " + str(a) + ", expected " + str(b) + ")" ) a = result[i].end b = curve_list[i].end assert abs((a - b) / a - 0) < DELTA, ( "Wrong build_geo (for end point " + str(i) + " returned " + str(a) + ", expected " + str(b) + ")" )
[docs] def test_get_surface_active(self): """Check that the get_surface_active works when stator = false""" lam = LamSlot(is_internal=True, Rext=0.1325, is_stator=False) lam.slot = SlotW29(H0=1e-3, H1=1.5e-3, H2=30e-3, W0=12e-3, W1=14e-3, W2=20e-3) result = lam.slot.get_surface_active() assert result.label == "Wind_Rotor_R0_T0_S0" assert len(result.get_lines()) == 6