Source code for pyleecan.Classes.ElmerResults

# -*- coding: utf-8 -*-
# File generated according to Generator/ClassesRef/Elmer/ElmerResults.csv
# WARNING! All changes made in this file will be lost!
"""Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Elmer/ElmerResults
"""

from os import linesep
from sys import getsizeof
from logging import getLogger
from ._check import check_var, raise_
from ..Functions.get_logger import get_logger
from ..Functions.save import save
from ..Functions.load import load_init_dict
from ..Functions.Load.import_class import import_class
from copy import deepcopy
from .Elmer import Elmer

# Import all class method
# Try/catch to remove unnecessary dependencies in unused method
try:
    from ..Methods.Elmer.ElmerResults.load_data import load_data
except ImportError as error:
    load_data = error

try:
    from ..Methods.Elmer.ElmerResults.load_columns import load_columns
except ImportError as error:
    load_columns = error

try:
    from ..Methods.Elmer.ElmerResults.get_data import get_data
except ImportError as error:
    get_data = error


from numpy import isnan
from ._check import InitUnKnowClassError


[docs]class ElmerResults(Elmer): """Class to get 'SaveScalars' and 'SaveLine' data""" VERSION = 1 # Check ImportError to remove unnecessary dependencies in unused method # cf Methods.Elmer.ElmerResults.load_data if isinstance(load_data, ImportError): load_data = property( fget=lambda x: raise_( ImportError( "Can't use ElmerResults method load_data: " + str(load_data) ) ) ) else: load_data = load_data # cf Methods.Elmer.ElmerResults.load_columns if isinstance(load_columns, ImportError): load_columns = property( fget=lambda x: raise_( ImportError( "Can't use ElmerResults method load_columns: " + str(load_columns) ) ) ) else: load_columns = load_columns # cf Methods.Elmer.ElmerResults.get_data if isinstance(get_data, ImportError): get_data = property( fget=lambda x: raise_( ImportError("Can't use ElmerResults method get_data: " + str(get_data)) ) ) else: get_data = get_data # generic save method is available in all object save = save # get_logger method is available in all object get_logger = get_logger def __init__( self, data=-1, file="", usecols=-1, columns=-1, is_scalars=False, logger_name="Pyleecan.Elmer", init_dict=None, init_str=None, ): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "data" in list(init_dict.keys()): data = init_dict["data"] if "file" in list(init_dict.keys()): file = init_dict["file"] if "usecols" in list(init_dict.keys()): usecols = init_dict["usecols"] if "columns" in list(init_dict.keys()): columns = init_dict["columns"] if "is_scalars" in list(init_dict.keys()): is_scalars = init_dict["is_scalars"] if "logger_name" in list(init_dict.keys()): logger_name = init_dict["logger_name"] # Set the properties (value check and convertion are done in setter) self.data = data self.file = file self.usecols = usecols self.columns = columns self.is_scalars = is_scalars # Call Elmer init super(ElmerResults, self).__init__(logger_name=logger_name) # The class is frozen (in Elmer init), for now it's impossible to # add new properties def __str__(self): """Convert this object in a readeable string (for print)""" ElmerResults_str = "" # Get the properties inherited from Elmer ElmerResults_str += super(ElmerResults, self).__str__() ElmerResults_str += "data = " + str(self.data) + linesep ElmerResults_str += 'file = "' + str(self.file) + '"' + linesep ElmerResults_str += ( "usecols = " + linesep + str(self.usecols).replace(linesep, linesep + "\t") + linesep ) ElmerResults_str += ( "columns = " + linesep + str(self.columns).replace(linesep, linesep + "\t") + linesep ) ElmerResults_str += "is_scalars = " + str(self.is_scalars) + linesep return ElmerResults_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False # Check the properties inherited from Elmer if not super(ElmerResults, self).__eq__(other): return False if other.data != self.data: return False if other.file != self.file: return False if other.usecols != self.usecols: return False if other.columns != self.columns: return False if other.is_scalars != self.is_scalars: return False return True
[docs] def compare(self, other, name="self", ignore_list=None, is_add_value=False): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() # Check the properties inherited from Elmer diff_list.extend( super(ElmerResults, self).compare( other, name=name, ignore_list=ignore_list, is_add_value=is_add_value ) ) if other._data != self._data: if is_add_value: val_str = ( " (self=" + str(self._data) + ", other=" + str(other._data) + ")" ) diff_list.append(name + ".data" + val_str) else: diff_list.append(name + ".data") if other._file != self._file: if is_add_value: val_str = ( " (self=" + str(self._file) + ", other=" + str(other._file) + ")" ) diff_list.append(name + ".file" + val_str) else: diff_list.append(name + ".file") if other._usecols != self._usecols: if is_add_value: val_str = ( " (self=" + str(self._usecols) + ", other=" + str(other._usecols) + ")" ) diff_list.append(name + ".usecols" + val_str) else: diff_list.append(name + ".usecols") if other._columns != self._columns: if is_add_value: val_str = ( " (self=" + str(self._columns) + ", other=" + str(other._columns) + ")" ) diff_list.append(name + ".columns" + val_str) else: diff_list.append(name + ".columns") if other._is_scalars != self._is_scalars: if is_add_value: val_str = ( " (self=" + str(self._is_scalars) + ", other=" + str(other._is_scalars) + ")" ) diff_list.append(name + ".is_scalars" + val_str) else: diff_list.append(name + ".is_scalars") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list
def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object # Get size of the properties inherited from Elmer S += super(ElmerResults, self).__sizeof__() if self.data is not None: for key, value in self.data.items(): S += getsizeof(value) + getsizeof(key) S += getsizeof(self.file) if self.usecols is not None: for value in self.usecols: S += getsizeof(value) if self.columns is not None: for value in self.columns: S += getsizeof(value) S += getsizeof(self.is_scalars) return S
[docs] def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ # Get the properties inherited from Elmer ElmerResults_dict = super(ElmerResults, self).as_dict( type_handle_ndarray=type_handle_ndarray, keep_function=keep_function, **kwargs ) ElmerResults_dict["data"] = self.data.copy() if self.data is not None else None ElmerResults_dict["file"] = self.file ElmerResults_dict["usecols"] = ( self.usecols.copy() if self.usecols is not None else None ) ElmerResults_dict["columns"] = ( self.columns.copy() if self.columns is not None else None ) ElmerResults_dict["is_scalars"] = self.is_scalars # The class name is added to the dict for deserialisation purpose # Overwrite the mother class name ElmerResults_dict["__class__"] = "ElmerResults" return ElmerResults_dict
[docs] def copy(self): """Creates a deepcopy of the object""" # Handle deepcopy of all the properties if self.data is None: data_val = None else: data_val = self.data.copy() file_val = self.file if self.usecols is None: usecols_val = None else: usecols_val = self.usecols.copy() if self.columns is None: columns_val = None else: columns_val = self.columns.copy() is_scalars_val = self.is_scalars logger_name_val = self.logger_name # Creates new object of the same type with the copied properties obj_copy = type(self)( data=data_val, file=file_val, usecols=usecols_val, columns=columns_val, is_scalars=is_scalars_val, logger_name=logger_name_val, ) return obj_copy
def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.data = None self.file = None self.usecols = None self.columns = None self.is_scalars = None # Set to None the properties inherited from Elmer super(ElmerResults, self)._set_None() def _get_data(self): """getter of data""" return self._data def _set_data(self, value): """setter of data""" if type(value) is int and value == -1: value = dict() check_var("data", value, "dict") self._data = value data = property( fget=_get_data, fset=_set_data, doc=u"""Dict with simulation results :Type: dict """, ) def _get_file(self): """getter of file""" return self._file def _set_file(self, value): """setter of file""" check_var("file", value, "str") self._file = value file = property( fget=_get_file, fset=_set_file, doc=u"""Filename of the results data file :Type: str """, ) def _get_usecols(self): """getter of usecols""" return self._usecols def _set_usecols(self, value): """setter of usecols""" if type(value) is int and value == -1: value = list() check_var("usecols", value, "list") self._usecols = value usecols = property( fget=_get_usecols, fset=_set_usecols, doc=u"""List integers (starting with 1) of columns to load. If usecols is not set all columns are loaded. :Type: list """, ) def _get_columns(self): """getter of columns""" return self._columns def _set_columns(self, value): """setter of columns""" if type(value) is int and value == -1: value = list() check_var("columns", value, "list") self._columns = value columns = property( fget=_get_columns, fset=_set_columns, doc=u"""List of columns data names :Type: list """, ) def _get_is_scalars(self): """getter of is_scalars""" return self._is_scalars def _set_is_scalars(self, value): """setter of is_scalars""" check_var("is_scalars", value, "bool") self._is_scalars = value is_scalars = property( fget=_get_is_scalars, fset=_set_is_scalars, doc=u"""Determin if data are 'SaveScalars' data, else 'SaveLine' data are assumed :Type: bool """, )