Source code for pyleecan.Classes.LossModel

# -*- coding: utf-8 -*-
# File generated according to Generator/ClassesRef/Loss/LossModel.csv
# WARNING! All changes made in this file will be lost!
"""Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Loss/LossModel
"""

from os import linesep
from sys import getsizeof
from logging import getLogger
from ._check import check_var, raise_
from ..Functions.get_logger import get_logger
from ..Functions.save import save
from ..Functions.load import load_init_dict
from ..Functions.Load.import_class import import_class
from copy import deepcopy
from ._frozen import FrozenClass

from numpy import isnan
from ._check import InitUnKnowClassError


[docs]class LossModel(FrozenClass): """Abstract Loss Model Class""" VERSION = 1 # generic save method is available in all object save = save # get_logger method is available in all object get_logger = get_logger def __init__( self, name="", group="", is_show_fig=False, coeff_dict=None, init_dict=None, init_str=None, ): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "name" in list(init_dict.keys()): name = init_dict["name"] if "group" in list(init_dict.keys()): group = init_dict["group"] if "is_show_fig" in list(init_dict.keys()): is_show_fig = init_dict["is_show_fig"] if "coeff_dict" in list(init_dict.keys()): coeff_dict = init_dict["coeff_dict"] # Set the properties (value check and convertion are done in setter) self.parent = None self.name = name self.group = group self.is_show_fig = is_show_fig self.coeff_dict = coeff_dict # The class is frozen, for now it's impossible to add new properties self._freeze() def __str__(self): """Convert this object in a readeable string (for print)""" LossModel_str = "" if self.parent is None: LossModel_str += "parent = None " + linesep else: LossModel_str += "parent = " + str(type(self.parent)) + " object" + linesep LossModel_str += 'name = "' + str(self.name) + '"' + linesep LossModel_str += 'group = "' + str(self.group) + '"' + linesep LossModel_str += "is_show_fig = " + str(self.is_show_fig) + linesep LossModel_str += "coeff_dict = " + str(self.coeff_dict) + linesep return LossModel_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False if other.name != self.name: return False if other.group != self.group: return False if other.is_show_fig != self.is_show_fig: return False if other.coeff_dict != self.coeff_dict: return False return True
[docs] def compare(self, other, name="self", ignore_list=None, is_add_value=False): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() if other._name != self._name: if is_add_value: val_str = ( " (self=" + str(self._name) + ", other=" + str(other._name) + ")" ) diff_list.append(name + ".name" + val_str) else: diff_list.append(name + ".name") if other._group != self._group: if is_add_value: val_str = ( " (self=" + str(self._group) + ", other=" + str(other._group) + ")" ) diff_list.append(name + ".group" + val_str) else: diff_list.append(name + ".group") if other._is_show_fig != self._is_show_fig: if is_add_value: val_str = ( " (self=" + str(self._is_show_fig) + ", other=" + str(other._is_show_fig) + ")" ) diff_list.append(name + ".is_show_fig" + val_str) else: diff_list.append(name + ".is_show_fig") if other._coeff_dict != self._coeff_dict: if is_add_value: val_str = ( " (self=" + str(self._coeff_dict) + ", other=" + str(other._coeff_dict) + ")" ) diff_list.append(name + ".coeff_dict" + val_str) else: diff_list.append(name + ".coeff_dict") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list
def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object S += getsizeof(self.name) S += getsizeof(self.group) S += getsizeof(self.is_show_fig) if self.coeff_dict is not None: for key, value in self.coeff_dict.items(): S += getsizeof(value) + getsizeof(key) return S
[docs] def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ LossModel_dict = dict() LossModel_dict["name"] = self.name LossModel_dict["group"] = self.group LossModel_dict["is_show_fig"] = self.is_show_fig LossModel_dict["coeff_dict"] = ( self.coeff_dict.copy() if self.coeff_dict is not None else None ) # The class name is added to the dict for deserialisation purpose LossModel_dict["__class__"] = "LossModel" return LossModel_dict
[docs] def copy(self): """Creates a deepcopy of the object""" # Handle deepcopy of all the properties name_val = self.name group_val = self.group is_show_fig_val = self.is_show_fig if self.coeff_dict is None: coeff_dict_val = None else: coeff_dict_val = self.coeff_dict.copy() # Creates new object of the same type with the copied properties obj_copy = type(self)( name=name_val, group=group_val, is_show_fig=is_show_fig_val, coeff_dict=coeff_dict_val, ) return obj_copy
def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.name = None self.group = None self.is_show_fig = None self.coeff_dict = None def _get_name(self): """getter of name""" return self._name def _set_name(self, value): """setter of name""" check_var("name", value, "str") self._name = value name = property( fget=_get_name, fset=_set_name, doc=u"""Name of the loss simulation (has to be unique) :Type: str """, ) def _get_group(self): """getter of group""" return self._group def _set_group(self, value): """setter of group""" check_var("group", value, "str") self._group = value group = property( fget=_get_group, fset=_set_group, doc=u"""Group in which the loss will be computed :Type: str """, ) def _get_is_show_fig(self): """getter of is_show_fig""" return self._is_show_fig def _set_is_show_fig(self, value): """setter of is_show_fig""" check_var("is_show_fig", value, "bool") self._is_show_fig = value is_show_fig = property( fget=_get_is_show_fig, fset=_set_is_show_fig, doc=u"""True to show the plot of the curve fitting :Type: bool """, ) def _get_coeff_dict(self): """getter of coeff_dict""" return self._coeff_dict def _set_coeff_dict(self, value): """setter of coeff_dict""" if type(value) is int and value == -1: value = dict() check_var("coeff_dict", value, "dict") self._coeff_dict = value coeff_dict = property( fget=_get_coeff_dict, fset=_set_coeff_dict, doc=u"""dict of coefficients to compute losses with respect to frequency :Type: dict """, )