# -*- coding: utf-8 -*-
# File generated according to Generator/ClassesRef/Material/ModelBH_Langevin.csv
# WARNING! All changes made in this file will be lost!
"""Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Material/ModelBH_Langevin
"""
from os import linesep
from sys import getsizeof
from logging import getLogger
from ._check import check_var, raise_
from ..Functions.get_logger import get_logger
from ..Functions.save import save
from ..Functions.load import load_init_dict
from ..Functions.Load.import_class import import_class
from copy import deepcopy
from .ModelBH import ModelBH
# Import all class method
# Try/catch to remove unnecessary dependencies in unused method
try:
from ..Methods.Material.ModelBH_Langevin.get_BH import get_BH
except ImportError as error:
get_BH = error
try:
from ..Methods.Material.ModelBH_Langevin.BH_func import BH_func
except ImportError as error:
BH_func = error
from numpy import isnan
from ._check import InitUnKnowClassError
[docs]class ModelBH_Langevin(ModelBH):
"""Abstract class for BH curve model """
VERSION = 1
# Check ImportError to remove unnecessary dependencies in unused method
# cf Methods.Material.ModelBH_Langevin.get_BH
if isinstance(get_BH, ImportError):
get_BH = property(
fget=lambda x: raise_(
ImportError("Can't use ModelBH_Langevin method get_BH: " + str(get_BH))
)
)
else:
get_BH = get_BH
# cf Methods.Material.ModelBH_Langevin.BH_func
if isinstance(BH_func, ImportError):
BH_func = property(
fget=lambda x: raise_(
ImportError(
"Can't use ModelBH_Langevin method BH_func: " + str(BH_func)
)
)
)
else:
BH_func = BH_func
# generic save method is available in all object
save = save
# get_logger method is available in all object
get_logger = get_logger
def __init__(
self,
Bs=None,
a=None,
param1=1.89,
param2=240,
Bmax=2.31,
Hmax=None,
delta=100,
init_dict=None,
init_str=None,
):
"""Constructor of the class. Can be use in three ways :
- __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values
for pyleecan type, -1 will call the default constructor
- __init__ (init_dict = d) d must be a dictionary with property names as keys
- __init__ (init_str = s) s must be a string
s is the file path to load
ndarray or list can be given for Vector and Matrix
object or dict can be given for pyleecan Object"""
if init_str is not None: # Load from a file
init_dict = load_init_dict(init_str)[1]
if init_dict is not None: # Initialisation by dict
assert type(init_dict) is dict
# Overwrite default value with init_dict content
if "Bs" in list(init_dict.keys()):
Bs = init_dict["Bs"]
if "a" in list(init_dict.keys()):
a = init_dict["a"]
if "param1" in list(init_dict.keys()):
param1 = init_dict["param1"]
if "param2" in list(init_dict.keys()):
param2 = init_dict["param2"]
if "Bmax" in list(init_dict.keys()):
Bmax = init_dict["Bmax"]
if "Hmax" in list(init_dict.keys()):
Hmax = init_dict["Hmax"]
if "delta" in list(init_dict.keys()):
delta = init_dict["delta"]
# Set the properties (value check and convertion are done in setter)
self.Bs = Bs
self.a = a
self.param1 = param1
self.param2 = param2
# Call ModelBH init
super(ModelBH_Langevin, self).__init__(Bmax=Bmax, Hmax=Hmax, delta=delta)
# The class is frozen (in ModelBH init), for now it's impossible to
# add new properties
def __str__(self):
"""Convert this object in a readeable string (for print)"""
ModelBH_Langevin_str = ""
# Get the properties inherited from ModelBH
ModelBH_Langevin_str += super(ModelBH_Langevin, self).__str__()
ModelBH_Langevin_str += "Bs = " + str(self.Bs) + linesep
ModelBH_Langevin_str += "a = " + str(self.a) + linesep
ModelBH_Langevin_str += "param1 = " + str(self.param1) + linesep
ModelBH_Langevin_str += "param2 = " + str(self.param2) + linesep
return ModelBH_Langevin_str
def __eq__(self, other):
"""Compare two objects (skip parent)"""
if type(other) != type(self):
return False
# Check the properties inherited from ModelBH
if not super(ModelBH_Langevin, self).__eq__(other):
return False
if other.Bs != self.Bs:
return False
if other.a != self.a:
return False
if other.param1 != self.param1:
return False
if other.param2 != self.param2:
return False
return True
[docs] def compare(self, other, name="self", ignore_list=None, is_add_value=False):
"""Compare two objects and return list of differences"""
if ignore_list is None:
ignore_list = list()
if type(other) != type(self):
return ["type(" + name + ")"]
diff_list = list()
# Check the properties inherited from ModelBH
diff_list.extend(
super(ModelBH_Langevin, self).compare(
other, name=name, ignore_list=ignore_list, is_add_value=is_add_value
)
)
if (
other._Bs is not None
and self._Bs is not None
and isnan(other._Bs)
and isnan(self._Bs)
):
pass
elif other._Bs != self._Bs:
if is_add_value:
val_str = " (self=" + str(self._Bs) + ", other=" + str(other._Bs) + ")"
diff_list.append(name + ".Bs" + val_str)
else:
diff_list.append(name + ".Bs")
if (
other._a is not None
and self._a is not None
and isnan(other._a)
and isnan(self._a)
):
pass
elif other._a != self._a:
if is_add_value:
val_str = " (self=" + str(self._a) + ", other=" + str(other._a) + ")"
diff_list.append(name + ".a" + val_str)
else:
diff_list.append(name + ".a")
if (
other._param1 is not None
and self._param1 is not None
and isnan(other._param1)
and isnan(self._param1)
):
pass
elif other._param1 != self._param1:
if is_add_value:
val_str = (
" (self="
+ str(self._param1)
+ ", other="
+ str(other._param1)
+ ")"
)
diff_list.append(name + ".param1" + val_str)
else:
diff_list.append(name + ".param1")
if (
other._param2 is not None
and self._param2 is not None
and isnan(other._param2)
and isnan(self._param2)
):
pass
elif other._param2 != self._param2:
if is_add_value:
val_str = (
" (self="
+ str(self._param2)
+ ", other="
+ str(other._param2)
+ ")"
)
diff_list.append(name + ".param2" + val_str)
else:
diff_list.append(name + ".param2")
# Filter ignore differences
diff_list = list(filter(lambda x: x not in ignore_list, diff_list))
return diff_list
def __sizeof__(self):
"""Return the size in memory of the object (including all subobject)"""
S = 0 # Full size of the object
# Get size of the properties inherited from ModelBH
S += super(ModelBH_Langevin, self).__sizeof__()
S += getsizeof(self.Bs)
S += getsizeof(self.a)
S += getsizeof(self.param1)
S += getsizeof(self.param2)
return S
[docs] def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs):
"""
Convert this object in a json serializable dict (can be use in __init__).
type_handle_ndarray: int
How to handle ndarray (0: tolist, 1: copy, 2: nothing)
keep_function : bool
True to keep the function object, else return str
Optional keyword input parameter is for internal use only
and may prevent json serializability.
"""
# Get the properties inherited from ModelBH
ModelBH_Langevin_dict = super(ModelBH_Langevin, self).as_dict(
type_handle_ndarray=type_handle_ndarray,
keep_function=keep_function,
**kwargs
)
ModelBH_Langevin_dict["Bs"] = self.Bs
ModelBH_Langevin_dict["a"] = self.a
ModelBH_Langevin_dict["param1"] = self.param1
ModelBH_Langevin_dict["param2"] = self.param2
# The class name is added to the dict for deserialisation purpose
# Overwrite the mother class name
ModelBH_Langevin_dict["__class__"] = "ModelBH_Langevin"
return ModelBH_Langevin_dict
[docs] def copy(self):
"""Creates a deepcopy of the object"""
# Handle deepcopy of all the properties
Bs_val = self.Bs
a_val = self.a
param1_val = self.param1
param2_val = self.param2
Bmax_val = self.Bmax
Hmax_val = self.Hmax
delta_val = self.delta
# Creates new object of the same type with the copied properties
obj_copy = type(self)(
Bs=Bs_val,
a=a_val,
param1=param1_val,
param2=param2_val,
Bmax=Bmax_val,
Hmax=Hmax_val,
delta=delta_val,
)
return obj_copy
def _set_None(self):
"""Set all the properties to None (except pyleecan object)"""
self.Bs = None
self.a = None
self.param1 = None
self.param2 = None
# Set to None the properties inherited from ModelBH
super(ModelBH_Langevin, self)._set_None()
def _get_Bs(self):
"""getter of Bs"""
return self._Bs
def _set_Bs(self, value):
"""setter of Bs"""
check_var("Bs", value, "float")
self._Bs = value
Bs = property(
fget=_get_Bs,
fset=_set_Bs,
doc=u"""To enforc Saturation flux density
:Type: float
""",
)
def _get_a(self):
"""getter of a"""
return self._a
def _set_a(self, value):
"""setter of a"""
check_var("a", value, "float")
self._a = value
a = property(
fget=_get_a,
fset=_set_a,
doc=u"""To enforce Saturation parameter a
:Type: float
""",
)
def _get_param1(self):
"""getter of param1"""
return self._param1
def _set_param1(self, value):
"""setter of param1"""
check_var("param1", value, "float")
self._param1 = value
param1 = property(
fget=_get_param1,
fset=_set_param1,
doc=u"""Init value for Bs for fitting algorithm
:Type: float
""",
)
def _get_param2(self):
"""getter of param2"""
return self._param2
def _set_param2(self, value):
"""setter of param2"""
check_var("param2", value, "float")
self._param2 = value
param2 = property(
fget=_get_param2,
fset=_set_param2,
doc=u"""Init value for a for fitting algorithm
:Type: float
""",
)