Source code for pyleecan.Classes.ModelBH_exponential

# -*- coding: utf-8 -*-
# File generated according to Generator/ClassesRef/Material/ModelBH_exponential.csv
# WARNING! All changes made in this file will be lost!
"""Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Material/ModelBH_exponential
"""

from os import linesep
from sys import getsizeof
from logging import getLogger
from ._check import check_var, raise_
from ..Functions.get_logger import get_logger
from ..Functions.save import save
from ..Functions.load import load_init_dict
from ..Functions.Load.import_class import import_class
from copy import deepcopy
from ._frozen import FrozenClass

from numpy import isnan
from ._check import InitUnKnowClassError


[docs]class ModelBH_exponential(FrozenClass): """Abstract class for BH curve model """ VERSION = 1 # generic save method is available in all object save = save # get_logger method is available in all object get_logger = get_logger def __init__(self, Bs=None, mu_a=None, init_dict=None, init_str=None): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "Bs" in list(init_dict.keys()): Bs = init_dict["Bs"] if "mu_a" in list(init_dict.keys()): mu_a = init_dict["mu_a"] # Set the properties (value check and convertion are done in setter) self.parent = None self.Bs = Bs self.mu_a = mu_a # The class is frozen, for now it's impossible to add new properties self._freeze() def __str__(self): """Convert this object in a readeable string (for print)""" ModelBH_exponential_str = "" if self.parent is None: ModelBH_exponential_str += "parent = None " + linesep else: ModelBH_exponential_str += ( "parent = " + str(type(self.parent)) + " object" + linesep ) ModelBH_exponential_str += "Bs = " + str(self.Bs) + linesep ModelBH_exponential_str += "mu_a = " + str(self.mu_a) + linesep return ModelBH_exponential_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False if other.Bs != self.Bs: return False if other.mu_a != self.mu_a: return False return True
[docs] def compare(self, other, name="self", ignore_list=None, is_add_value=False): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() if ( other._Bs is not None and self._Bs is not None and isnan(other._Bs) and isnan(self._Bs) ): pass elif other._Bs != self._Bs: if is_add_value: val_str = " (self=" + str(self._Bs) + ", other=" + str(other._Bs) + ")" diff_list.append(name + ".Bs" + val_str) else: diff_list.append(name + ".Bs") if ( other._mu_a is not None and self._mu_a is not None and isnan(other._mu_a) and isnan(self._mu_a) ): pass elif other._mu_a != self._mu_a: if is_add_value: val_str = ( " (self=" + str(self._mu_a) + ", other=" + str(other._mu_a) + ")" ) diff_list.append(name + ".mu_a" + val_str) else: diff_list.append(name + ".mu_a") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list
def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object S += getsizeof(self.Bs) S += getsizeof(self.mu_a) return S
[docs] def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ ModelBH_exponential_dict = dict() ModelBH_exponential_dict["Bs"] = self.Bs ModelBH_exponential_dict["mu_a"] = self.mu_a # The class name is added to the dict for deserialisation purpose ModelBH_exponential_dict["__class__"] = "ModelBH_exponential" return ModelBH_exponential_dict
[docs] def copy(self): """Creates a deepcopy of the object""" # Handle deepcopy of all the properties Bs_val = self.Bs mu_a_val = self.mu_a # Creates new object of the same type with the copied properties obj_copy = type(self)(Bs=Bs_val, mu_a=mu_a_val) return obj_copy
def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.Bs = None self.mu_a = None def _get_Bs(self): """getter of Bs""" return self._Bs def _set_Bs(self, value): """setter of Bs""" check_var("Bs", value, "float") self._Bs = value Bs = property( fget=_get_Bs, fset=_set_Bs, doc=u"""BH curve parameter :Type: float """, ) def _get_mu_a(self): """getter of mu_a""" return self._mu_a def _set_mu_a(self, value): """setter of mu_a""" check_var("mu_a", value, "float") self._mu_a = value mu_a = property( fget=_get_mu_a, fset=_set_mu_a, doc=u"""Saturation permeability parameter :Type: float """, )