pyleecan.Classes.LossModelBertotti module¶
Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Loss/LossModelBertotti
- class LossModelBertotti(k_hy=None, k_ed=None, k_ex=None, name='', group='', is_show_fig=False, coeff_dict=None, init_dict=None, init_str=None)[source]¶
Bases:
LossModel
Bertotti Loss Model Class
- VERSION = 1¶
- comp_coeff(material)¶
Enables to compute the coefficients of the loss model with a curve fitting on loss data stored in the material (stored in self.k_hy, self.k_ed, self.k_ex)
- Parameters:
self (LossModelBertotti) – A loss model to compute Bertotti losses
material (Material) – A material object, corresponding to the material used in the electrical machine. This material object must contain loss data as an ImportMatrixVal object. This matrix must contain 3 rows, correspoding to the excitation frequency (Hz), the peak magnetic flux density (T), and the loss density (W/kg) in this order.
- comp_loss()¶
Calculate loss density in iron core given by group “stator core” or “rotor core” assuming power density is given by a Bertotti model
Pcore = k_hy * f * B^2 + k_ed * (f B)^2 + k_ex * (f B)^1.5
- Parameters:
self (LossModelBertotti) – a LossModelBertotti object
- Returns:
Pcore_density (ndarray) – Core loss density function of frequency and elements [W/m3]
freqs (ndarray) – frequency vector [Hz]
- save(save_path='', is_folder=False, type_handle_old=2, type_compression=0)¶
Save the object to the save_path
- Parameters:
self – A pyleecan object
save_path (str) – path to the folder to save the object
is_folder (bool) – to split the object in different files: separate simulation machine and materials (json only)
type_handle_old (int) – How to handle old file in folder mode (0:Nothing, 1:Delete, 2:Move to “Backup” folder)
type_compression (int) – Available only for json, 0: no compression, 1: gzip
- get_logger()¶
Get the object logger or its parent’s one
- Parameters:
obj – A pyleecan object
- Returns:
logger – Pyleecan object dedicated logger
- Return type:
logging.Logger
- compare(other, name='self', ignore_list=None, is_add_value=False)[source]¶
Compare two objects and return list of differences
- as_dict(type_handle_ndarray=0, keep_function=False, **kwargs)[source]¶
Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int
How to handle ndarray (0: tolist, 1: copy, 2: nothing)
- keep_functionbool
True to keep the function object, else return str
Optional keyword input parameter is for internal use only and may prevent json serializability.
- property k_hy¶
Hysteresis loss coefficient
- Type:
float
- property k_ed¶
Eddy current loss coefficient
- Type:
float
- property k_ex¶
Excess loss coefficient
- Type:
float