pyleecan.Classes.NotchEvenDist module¶
Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Machine/NotchEvenDist
- class NotchEvenDist(alpha=0, notch_shape=- 1, init_dict=None, init_str=None)[source]¶
Bases:
Notch
Class for evenly distributed notches (according to Zs)
- VERSION = 1¶
- comp_surface()¶
Compute the surface of ALL THE NOTCHES
- Parameters:
self (NotchEvenDist) – A NotchEvenDist object
- Returns:
Snotch – surface of ALL THE NOTCHES
- Return type:
float
- comp_periodicity_spatial()¶
Compute the periodicity factor of the notch
- Parameters:
self (NotchEvenDist) – A NotchEvenDist object
- Returns:
per_a (int) – Number of spatial periodicities of the notch
is_antiper_a (bool) – True if an spatial anti-periodicity is possible after the periodicities
- get_notch_desc_list(sym=1)¶
Returns an ordered description of the notches
- Parameters:
self (NotchEvenDist) – A NotchEvenDist object
sym (int) – Number of symmetry
- Returns:
notch_desc –
- trigo ordered list of dictionary with key:
”begin_angle” : float [rad] “end_angle” : float [rad] “obj” : Slot (for notch_shape) / None for Radius “lines : lines corresponding to the radius part “label” : Radius/Notch/Slot
- Return type:
list
- save(save_path='', is_folder=False, type_handle_old=2, type_compression=0)¶
Save the object to the save_path
- Parameters:
self – A pyleecan object
save_path (str) – path to the folder to save the object
is_folder (bool) – to split the object in different files: separate simulation machine and materials (json only)
type_handle_old (int) – How to handle old file in folder mode (0:Nothing, 1:Delete, 2:Move to “Backup” folder)
type_compression (int) – Available only for json, 0: no compression, 1: gzip
- get_logger()¶
Get the object logger or its parent’s one
- Parameters:
obj – A pyleecan object
- Returns:
logger – Pyleecan object dedicated logger
- Return type:
logging.Logger
- compare(other, name='self', ignore_list=None, is_add_value=False)[source]¶
Compare two objects and return list of differences
- as_dict(type_handle_ndarray=0, keep_function=False, **kwargs)[source]¶
Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int
How to handle ndarray (0: tolist, 1: copy, 2: nothing)
- keep_functionbool
True to keep the function object, else return str
Optional keyword input parameter is for internal use only and may prevent json serializability.
- property alpha¶
angular positon of the first notch (0 is middle of first tooth)
- Type:
float
- property notch_shape¶
Shape of the Notch
- Type:
Slot