Source code for pyleecan.Classes.OptiBayesAlgSmoot

# -*- coding: utf-8 -*-
# File generated according to Generator/ClassesRef/Optimization/OptiBayesAlgSmoot.csv
# WARNING! All changes made in this file will be lost!
"""Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Optimization/OptiBayesAlgSmoot
"""

from os import linesep
from sys import getsizeof
from logging import getLogger
from ._check import check_var, raise_
from ..Functions.get_logger import get_logger
from ..Functions.save import save
from ..Functions.load import load_init_dict
from ..Functions.Load.import_class import import_class
from copy import deepcopy
from .OptiBayesAlg import OptiBayesAlg

# Import all class method
# Try/catch to remove unnecessary dependencies in unused method
try:
    from ..Methods.Optimization.OptiBayesAlgSmoot.solve import solve
except ImportError as error:
    solve = error

try:
    from ..Methods.Optimization.OptiBayesAlgSmoot.check_optimization_input import (
        check_optimization_input,
    )
except ImportError as error:
    check_optimization_input = error

try:
    from ..Methods.Optimization.OptiBayesAlgSmoot.evaluate import evaluate
except ImportError as error:
    evaluate = error

try:
    from ..Methods.Optimization.OptiBayesAlgSmoot.plot_pareto import plot_pareto
except ImportError as error:
    plot_pareto = error

try:
    from ..Methods.Optimization.OptiBayesAlgSmoot.eval_const import eval_const
except ImportError as error:
    eval_const = error


from numpy import isnan
from ._check import InitUnKnowClassError


[docs]class OptiBayesAlgSmoot(OptiBayesAlg): """Multi-objectives optimization problem with some constraints""" VERSION = 1 # Check ImportError to remove unnecessary dependencies in unused method # cf Methods.Optimization.OptiBayesAlgSmoot.solve if isinstance(solve, ImportError): solve = property( fget=lambda x: raise_( ImportError("Can't use OptiBayesAlgSmoot method solve: " + str(solve)) ) ) else: solve = solve # cf Methods.Optimization.OptiBayesAlgSmoot.check_optimization_input if isinstance(check_optimization_input, ImportError): check_optimization_input = property( fget=lambda x: raise_( ImportError( "Can't use OptiBayesAlgSmoot method check_optimization_input: " + str(check_optimization_input) ) ) ) else: check_optimization_input = check_optimization_input # cf Methods.Optimization.OptiBayesAlgSmoot.evaluate if isinstance(evaluate, ImportError): evaluate = property( fget=lambda x: raise_( ImportError( "Can't use OptiBayesAlgSmoot method evaluate: " + str(evaluate) ) ) ) else: evaluate = evaluate # cf Methods.Optimization.OptiBayesAlgSmoot.plot_pareto if isinstance(plot_pareto, ImportError): plot_pareto = property( fget=lambda x: raise_( ImportError( "Can't use OptiBayesAlgSmoot method plot_pareto: " + str(plot_pareto) ) ) ) else: plot_pareto = plot_pareto # cf Methods.Optimization.OptiBayesAlgSmoot.eval_const if isinstance(eval_const, ImportError): eval_const = property( fget=lambda x: raise_( ImportError( "Can't use OptiBayesAlgSmoot method eval_const: " + str(eval_const) ) ) ) else: eval_const = eval_const # generic save method is available in all object save = save # get_logger method is available in all object get_logger = get_logger def __init__( self, size_pop=40, nb_gen=100, nb_iter=15, nb_start=300, criterion="PI", kernel=0, problem=-1, xoutput=-1, logger_name="Pyleecan.OptiSolver", is_keep_all_output=False, init_dict=None, init_str=None, ): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "size_pop" in list(init_dict.keys()): size_pop = init_dict["size_pop"] if "nb_gen" in list(init_dict.keys()): nb_gen = init_dict["nb_gen"] if "nb_iter" in list(init_dict.keys()): nb_iter = init_dict["nb_iter"] if "nb_start" in list(init_dict.keys()): nb_start = init_dict["nb_start"] if "criterion" in list(init_dict.keys()): criterion = init_dict["criterion"] if "kernel" in list(init_dict.keys()): kernel = init_dict["kernel"] if "problem" in list(init_dict.keys()): problem = init_dict["problem"] if "xoutput" in list(init_dict.keys()): xoutput = init_dict["xoutput"] if "logger_name" in list(init_dict.keys()): logger_name = init_dict["logger_name"] if "is_keep_all_output" in list(init_dict.keys()): is_keep_all_output = init_dict["is_keep_all_output"] # Set the properties (value check and convertion are done in setter) self.size_pop = size_pop self.nb_gen = nb_gen # Call OptiBayesAlg init super(OptiBayesAlgSmoot, self).__init__( nb_iter=nb_iter, nb_start=nb_start, criterion=criterion, kernel=kernel, problem=problem, xoutput=xoutput, logger_name=logger_name, is_keep_all_output=is_keep_all_output, ) # The class is frozen (in OptiBayesAlg init), for now it's impossible to # add new properties def __str__(self): """Convert this object in a readeable string (for print)""" OptiBayesAlgSmoot_str = "" # Get the properties inherited from OptiBayesAlg OptiBayesAlgSmoot_str += super(OptiBayesAlgSmoot, self).__str__() OptiBayesAlgSmoot_str += "size_pop = " + str(self.size_pop) + linesep OptiBayesAlgSmoot_str += "nb_gen = " + str(self.nb_gen) + linesep return OptiBayesAlgSmoot_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False # Check the properties inherited from OptiBayesAlg if not super(OptiBayesAlgSmoot, self).__eq__(other): return False if other.size_pop != self.size_pop: return False if other.nb_gen != self.nb_gen: return False return True
[docs] def compare(self, other, name="self", ignore_list=None, is_add_value=False): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() # Check the properties inherited from OptiBayesAlg diff_list.extend( super(OptiBayesAlgSmoot, self).compare( other, name=name, ignore_list=ignore_list, is_add_value=is_add_value ) ) if other._size_pop != self._size_pop: if is_add_value: val_str = ( " (self=" + str(self._size_pop) + ", other=" + str(other._size_pop) + ")" ) diff_list.append(name + ".size_pop" + val_str) else: diff_list.append(name + ".size_pop") if other._nb_gen != self._nb_gen: if is_add_value: val_str = ( " (self=" + str(self._nb_gen) + ", other=" + str(other._nb_gen) + ")" ) diff_list.append(name + ".nb_gen" + val_str) else: diff_list.append(name + ".nb_gen") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list
def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object # Get size of the properties inherited from OptiBayesAlg S += super(OptiBayesAlgSmoot, self).__sizeof__() S += getsizeof(self.size_pop) S += getsizeof(self.nb_gen) return S
[docs] def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ # Get the properties inherited from OptiBayesAlg OptiBayesAlgSmoot_dict = super(OptiBayesAlgSmoot, self).as_dict( type_handle_ndarray=type_handle_ndarray, keep_function=keep_function, **kwargs ) OptiBayesAlgSmoot_dict["size_pop"] = self.size_pop OptiBayesAlgSmoot_dict["nb_gen"] = self.nb_gen # The class name is added to the dict for deserialisation purpose # Overwrite the mother class name OptiBayesAlgSmoot_dict["__class__"] = "OptiBayesAlgSmoot" return OptiBayesAlgSmoot_dict
[docs] def copy(self): """Creates a deepcopy of the object""" # Handle deepcopy of all the properties size_pop_val = self.size_pop nb_gen_val = self.nb_gen nb_iter_val = self.nb_iter nb_start_val = self.nb_start criterion_val = self.criterion kernel_val = self.kernel if self.problem is None: problem_val = None else: problem_val = self.problem.copy() if self.xoutput is None: xoutput_val = None else: xoutput_val = self.xoutput.copy() logger_name_val = self.logger_name is_keep_all_output_val = self.is_keep_all_output # Creates new object of the same type with the copied properties obj_copy = type(self)( size_pop=size_pop_val, nb_gen=nb_gen_val, nb_iter=nb_iter_val, nb_start=nb_start_val, criterion=criterion_val, kernel=kernel_val, problem=problem_val, xoutput=xoutput_val, logger_name=logger_name_val, is_keep_all_output=is_keep_all_output_val, ) return obj_copy
def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.size_pop = None self.nb_gen = None # Set to None the properties inherited from OptiBayesAlg super(OptiBayesAlgSmoot, self)._set_None() def _get_size_pop(self): """getter of size_pop""" return self._size_pop def _set_size_pop(self, value): """setter of size_pop""" check_var("size_pop", value, "int", Vmin=1) self._size_pop = value size_pop = property( fget=_get_size_pop, fset=_set_size_pop, doc=u"""Number of individuals for each generation :Type: int :min: 1 """, ) def _get_nb_gen(self): """getter of nb_gen""" return self._nb_gen def _set_nb_gen(self, value): """setter of nb_gen""" check_var("nb_gen", value, "int", Vmin=1) self._nb_gen = value nb_gen = property( fget=_get_nb_gen, fset=_set_nb_gen, doc=u"""Number of generations for the genetic part :Type: int :min: 1 """, )