pyleecan.Classes.OptiBayesAlgSmoot module¶
Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Optimization/OptiBayesAlgSmoot
- class OptiBayesAlgSmoot(size_pop=40, nb_gen=100, nb_iter=15, nb_start=300, criterion='PI', kernel=0, problem=- 1, xoutput=- 1, logger_name='Pyleecan.OptiSolver', is_keep_all_output=False, init_dict=None, init_str=None)[source]¶
Bases:
OptiBayesAlg
Multi-objectives optimization problem with some constraints
- VERSION = 1¶
- solve()¶
Method to perform Bayesian optimization using Smoot tools
- Parameters:
self (OptiBayesAlgSmoot) – Solver to perform Bayesian model creation, then use a genetic algorithm
- Returns:
multi_output – class containing the results
- Return type:
OutputMultiOpti
- check_optimization_input()¶
Check optimization parameters before solving the problem
- Parameters:
solver (Solver) – solver to perform the bayesian algorithm with SMT
- evaluate(input_x)¶
- plot_pareto(x_symbol, y_symbol, c_symbol=None, cmap=None, ax=None, title=None, grid=False, is_show_fig=True, save_path=None)¶
Plot the pareto front for 2 objective functions
- Parameters:
self (OptiBayesAlgSmoot) –
x_symbol (str) – symbol of the first objective function
y_symbol (str) – symbol of the second objective function
c_symbol (str) – optional symbol to set the plot colors
cmap (colormap) – optional colormap
is_show_fig (bool) – True to show figure after plot
save_path (str) – full path of the png file where the figure is saved if save_path is not None
- eval_const(constraint, input_x)¶
Evaluate the constraint at given points x
- save(save_path='', is_folder=False, type_handle_old=2, type_compression=0)¶
Save the object to the save_path
- Parameters:
self – A pyleecan object
save_path (str) – path to the folder to save the object
is_folder (bool) – to split the object in different files: separate simulation machine and materials (json only)
type_handle_old (int) – How to handle old file in folder mode (0:Nothing, 1:Delete, 2:Move to “Backup” folder)
type_compression (int) – Available only for json, 0: no compression, 1: gzip
- get_logger()¶
Get the object logger or its parent’s one
- Parameters:
obj – A pyleecan object
- Returns:
logger – Pyleecan object dedicated logger
- Return type:
logging.Logger
- compare(other, name='self', ignore_list=None, is_add_value=False)[source]¶
Compare two objects and return list of differences
- as_dict(type_handle_ndarray=0, keep_function=False, **kwargs)[source]¶
Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int
How to handle ndarray (0: tolist, 1: copy, 2: nothing)
- keep_functionbool
True to keep the function object, else return str
Optional keyword input parameter is for internal use only and may prevent json serializability.
- property size_pop¶
Number of individuals for each generation
- Type:
int
- Min:
1
- property nb_gen¶
Number of generations for the genetic part
- Type:
int
- Min:
1